

GHOST RECON: ADVANCED WARFIGHTER 2

- SCRIPTING FOR BEGINNERS -

- v1.04 -

By:
Grin_Wolfsong

Assisted by:

Grin_GeckoGore

Document Contents
Chapter 1: Introduction and XML Basics..3

Intro..3
XML...4

Chapter 2: Base XML Elements in GRAW2...6
Triggers ..6
Player Triggers...7
Briefings...7
Events...8

Chapter 3: Human Activated Locations...9
World.xml ..9
Location Trigger ..10
Enemy Activation Event ..11
Trigger Activation Event ...12
Alternative Location Conditions..12

Chapter 4: Objective UI ...13
Add Objective Event..14
Update Objective Event ...15
Completing Objective Event..15
Separate Waypoint Control..16
Strings.xml ...16

Chapter 5: Trigger Conditions ...17
Player Type Attribute...17
Conditions ..17
AND Conditions ..25
OR Conditions ...25
NOT Conditions...26
AND OR NOT Conditions ..26

Chapter 6: Event Element Types ...27
Start Time Attribute ...27
Player Type Attribute...27
Member Type Attribute ...27
Element Types ...28

Chapter 7: Player Triggers ...71
Conditions ..71
Action Triggers ..72
Action Attributes..72

Chapter 8: Briefings...75
Briefing Element Types ...76

Chapter 9: Demolition..78
Chapter 10: Timers ..79

Simple Timer ...79
Stoppable Timer...80
Outro ..80

 2

Chapter 1: Introduction and XML Basics

Those who scripted for GRAW1 may wonder if they need to read this document and
the answer is mostly likely yes. The base elements in GRAW2 are a little different
from those found in GRAW1, and some elements and children have also changed
names and attributes or been replaced by combined elements, so even those with
scripting experience from the first game should look through this document to get
those updates and changes. You may skip the rest of chapter 1 though as it’s the exact
same intro as I did for GRAW1.

Intro
To begin with you may wonder what you need to script for GRAW2. The answer is
simply nothing more then the game itself and a text editor of your choice. Many text
editors have color syntaxes for different programming languages, but it’s not essential
to be able to script. NotePad works just as well as for example XML Marker, which
you can find for free here: http://symbolclick.com/download.htm

Now then, before we go into all the different triggers, events, elements and other stuff
that looks cryptic when you first try to script a mission for GRAW2, let’s take a look
at a basic example of how a part of it works and also give a little introduction to
XML. We’ll only look into the mission.xml file for now.

Many things in mission.xml refer to entries found in world.xml, which is created by
the map editor. Those are the “game names” set to each objects by the designer that
places them into the world inside the map editor, all other names we’ll give things in
the mission.xml is only used internally by that file.

This document will not cover making the map itself or understanding the map editor.
Everything will require that you have already built the map and made it so the player
gets inserted somehow.

 3

http://symbolclick.com/download.htm

XML
Ok then, what is XML? To quote www.xml.com, this is the technical term:

XML is a markup language for documents containing structured
information. Structured information contains both content (words,
pictures, etc.) and some indication of what role that content plays
(for example, content in a section heading has a different meaning
from content in a footnote, which means something different than
content in a figure caption or content in a database table, etc.).

Almost all documents have some structure. A markup language is a
mechanism to identify structures in a document. The XML specification
defines a standard way to add markup to documents. Unlike HTML, XML
specifies neither semantics nor a tag set. In fact XML is really a
meta-language for describing markup languages. In other words, XML
provides a facility to define tags and the structural relationships
between them. Since there's no predefined tag set, there can't be any
preconceived semantics. All of the semantics of an XML document will
either be defined by the applications that process them or by
stylesheets.

Okay, I guess that didn’t help very much. But I’ll try to at least give you the basics of
how XML, or Extensible Markup Language, is structured. Its syntax is very similar to
that of HTML, which is where XML originated. Like HTML, XML is built in
hierarchies of nested elements. The main difference is that in XML the people making
the engine, in our case Grin, can create their own element tags, which means that they
can create their own elements to be used in the XML files we’ll be scripting in.

An XML element typically consists of two tags, a start tag and an end tag, which can
surround other elements that are then called child elements. The start tag consists of a
name surrounded by angle brackets, like “<name>”. The end tag consists of the same
name with angle brackets, but with a forward slash preceding the name, like
“</name>”. To set this end tag is what programmers refer to as “closing your tags”.
The elements attributes are everything that appears in the start tag after the name, but
before the closing angle bracket. First comes the name of the attribute, followed by
the value it is given. The value must ALWAYS be quoted, and each attribute name
should only appear once in any element. The elements content is everything that
appears between the start tag and the end tag, which in GRAW2 scripting is always in
the form of child elements.

An element without content has a special syntax to make it shorter to write. Instead of
writing a start tag followed immediately by an end tag, the forward slash is inserted at
the end of the start tag, before it’s closing angle bracket, like “<name/>”. If this
element has attributes, those are written as normal after the initial name.

Note: Everything in XML is also case sensitive. So if there is an element called “name”, you can’t call
it by writing “Name”.

 4

The basic syntax for an XML element looks like this:
<name attribute1=”value1”>
 <content attribute1=”value1”/>
</name>

Above you can see an element called “name”. It has an attribute called “attribute1”,
which is given the value “value1”. This element also has content in form of a child
element which has no content of its own and therefore is written with the special short
syntax provided for that case. As you can see, the child element is tabbed in as to
easier get an overview of the code hierarchy. The child element is called “content”
and also has an attribute called “attribute1” given the value “value1”. Finally there
is an end tag for the “name” element, telling the script that it has no more content.

Note: The two attributes with the same name has NO connection between them at all. Attributes are
specific to each element they are given to, and which attributes that can be given to an element is
defined by the creators of the engine that will read you script.

That is it for the basics in XML, which I hope will help you understand the rest of this
document better.

 5

Chapter 2: Base XML Elements in GRAW2

There are a few basic elements that Grin has created for GRAW2 to build the main
structure in the mission.xml. To begin with there are only four different base
elements you’ll be using, “trigger”, “player_trigger”, “briefing” and “event”.

Triggers
“trigger” is the base element used to create triggers that check if their given
conditions are “true” and if so runs a defined event. They always have content which
mainly consists of an element type called “condition”. There can be an unlimited
amount of “condition” elements inside a “trigger”, but all of them have to be
checked as true for the trigger to successfully run. These conditions have to be given a
value for their “type” attribute, and depending on which type of condition it is there
will be other attributes that needs to be set, which is covered in chapter 5. The last line
of content inside a “trigger” is always an element called “event”, which has an
attribute called “name” that hold the name of the event to run if all the conditions
above are true.

The “trigger” element itself also has attributes. The first is “name”, which is
required. This name is very important as it’s used to activate, and sometimes
deactivate, the trigger inside the mission script and as such it’s required to be unique
for each trigger. The second attribute is “interval“, which needs to be given a time
in seconds for how often the trigger should check if its conditions are true after it has
been activated.

Next comes a few optional attribute of which the first is called “preserved”. This
attribute defines if the trigger should stay active after it has executed its event, and so
it requires the value “true” if you want the trigger to run more then once. It will
default to “false” which will deactivate the trigger automatically once its given event
is called to execute. The next attribute is called “once” and should be defined as
“true” if the trigger should be able to successfully execute more then once, otherwise
this defaults to “false”.

The last optional attribute is “ping_pong”, which is basically the same as “once” but
with the exception that after it has successfully executed with all its conditions being
true, it will next wait until all its conditions are false which will make the next
successful call to its events. After that it will once again check for all conditions to be
true and so on until it’s deactivated. Every time the check is done for the conditions to
be false a different event will be called, which requires the user to use two “event”
elements in the trigger when setting “ping_pong” to “true”. Finally, don’t forget to
close your tags.

An example of the “trigger” element:
<trigger name=”” interval=”” preserved=”” once=”” ping_pong=””>
 <condition type=””/>
 <event name=””/> <!—Always used when conditions are true-->
 <event name=””/> <!-Only used in ping_pong for conditions false-->
</trigger>

 6

Player Triggers
“player_trigger” is the base element used to create a special type of trigger that
activates for each individual player. In other words it will activate at different times
for different players even if they are on the same team while playing in multi player.
It can also never be activated by an AI soldier even if he’s part of the player team.
This trigger type is used in the original content to display area names to players when
they move around the map to help with additional orientation and communication
inside the team.

This trigger type can have a few different types of contents. First is uses a
“condition” content, which I’ll specify in chapter 7. But besides that it has three
optional special child elements called “on_enter”, “on_exit” and “on_inside”,
which will run for example when the player enters exits or stays inside the zone, if the
given conditions are found to be true. These can be given a few different sub
functions defined by their “name” attribute, which will be covered in chapter 7.

The “player_trigger” element also has its own attributes. The first is “name”, which
just like for normal triggers has to be unique and is required as it’s used to activate
and deactivate each “player_trigger”. The next is “player_type”, which specifies
which type of player that can activate the trigger. This attribute can be used in team
versus team multi player modes to make the “player_trigger” only usable by one
side. See beginning of chapter 5 for details on acceptable “player_type” versions.

An example of the “player_trigger” element:
<player_trigger name=”” player_type=””>
 <condition name=””/>
 <on_enter name=””/>
</player_trigger>

Briefings
 “briefing” is the base element used to define what is shown during the missions
briefing in game modes using the briefing screen. It can be given child elements to
define which map to display, where to place markers or text on the map, which movie
to run in the NarCom window, which strings to use as briefing text, as well as the
maximum number of members in the campaign team including AI soldiers. This is
quite straight forward but we’ll cover it more in detail in chapter 8.

An example of the “briefing” element:
<briefing text_id=”” map_texture=”” max_ghosts=””>
 <briefing_text txt_id=”” headline_id=”” anchor=”” pos=”” type=””/>
 <map_text txt_id=”” pos=”” type=””/>
 <actor name=””/>
 <video name=””/>
</briefing>

 7

Events
“event” is the base element used to create the bulk of the script which actually drive
the mission forward. The “event” element has an attribute called “name”, which is
very important. This name is only used inside mission.xml, but it’s what you will
use to execute or stop that event when the script is running, and as such it’s required
to be unique for each event. Always use a name that describes what the purpose of the
event is to make it easier on yourself.

There is also optional attributes. The first is called “type”, which is used to define if
the event should only be able to run once by giving it the value “once”, and if not
used it will default to make the event run unlimited times. The second is
“breakable”, which defines if the event can be stopped once it’s executed and still
not reached the end tag. The default value for “breakable” is “true” if it’s not used.

The event content only consists of one element type, simply called “element”. It
sounds simple, but it can be set to a lot of different type by setting its first attribute
“type”. All of these types and all their special attributes and are covered in chapter 6,
but for now it’s good to know that most of them at least have no contents of their
own. It’s always a good thing to list the elements in the order you want them to
execute, so that it’s easier to read the script, although it’s not needed as executing
order is set by an attribute that all event content elements have, called “start_time”.
This attribute is usually declared last of the attributes for each element and set in
seconds delay that this specific element should have in executing after the event itself
has been called. I’ll show this in examples in later chapters. And then again at the end,
don’t forget to close your tags.

An example of the “event” element:
<event name=”” type=”” breakable=””>
 <element type=”” start_time=””/>
 <element type=”” start_time=””/>
</event>

Very important to know about before starting to script a mission is the special
“event” named “start_game”. You have to have this event and it’s executed
automatically when the map is loaded. Here you can define which different insertions
the mission has for example. The next special event is called “start_mission” and
it’s executed when the team leader hits the launch mission button, at the same time as
the events specified for the selected insertion (which I’ll cover later). This event is not
needed as the insertion event can be used to start your script execution chain, but
elements that are common to all insertion options should be included in the
“start_mission” event instead to repetitive code and keep it cleaner. There is also a
special event called “start_round”, which is executed for each player in multi player
once they first join a new round.

With knowledge about the base elements used inside each GRAW2 mission.xml,
we’ll move on with a simple scripting example next.

 8

Chapter 3: Human Activated Locations

With the basics covered, let’s finally get into some scripting. I think we should begin
by looking at something that you’ll use quite often in missions, triggers that activates
when member of the player team enters a location. They are a fairly simple setup and
not very complicated to use, so a good place to start. I’ll try to add a much descriptive
text as I can in this chapter as it’s our first look at actual mission scripting in GRAW2.

Our goal in this chapter is to create a location that will act as a trigger, which checks
if a member of the player team is inside it, and if so that condition will return the
value true and the trigger will call an event that will execute and activate a hostile
group which will attack the player. A quite simple and common setup to be found in
most mission scripts, and something you should know by heart after a while.

Here is the script that we’ll need:
<trigger name=”enemy_area01_trigger” interval=”0.3”>
 <condition type=” UnitInLocation” location=”enemy_area01”
 player_type=”campaign_team” amount=”1”/>
 <event name=”show_enemy_group01”/>
</user>

<event name=”start_mission”>
 <element type=”StartTrigger” name=”enemy_area01_trigger”/>
</event>

<event name=”show_enemy_group01”>
 <element type=”ActivateGroup” group_id=”enemy_group01”/>
</event>

At first you may think it looks complicated, but I’ll explain it all step by step and
gradually let you do more and more of the thinking as the chapters goes.

World.xml
For this script to work we’ll first need to place a few objects in the map editor, which
then will be saved into the world.xml. Those things are a location, which I named
“enemy_area01” in the map editor, and a human group of any hostile kind you want
to use, which I named “enemy_group01”. Save it and the world.xml will be updated.

 9

Location Trigger
Next we’ll need to do some scripting in mission.xml. Let’s begin with defining the
trigger and its child condition so that the game knows what location and what group
to look for, how many members of the group that has to be inside the location for it to
return that the condition is true, and also how often it should do this check after the
trigger has been activated.

That part of the script looks like this:
<trigger name=”enemy_area01_trigger” interval=”0.3”>
 <condition type=” UnitInLocation” location=”enemy_area01”
 player_type=”campaign_team” amount=”1”/>
 <event name=”show_enemy_group01”/>
</user>

First we have the element type “trigger” itself, as described in chapter 2 it’s what
we have to use to make the game check if a set condition is true so we know that our
“event” should be executed.

Next is the required attribute, “name”, where you set the name used to refer to this
trigger inside the mission.xml. Use something descriptive so you remember what the
purpose of the trigger is in the script. I’ll call it “enemy_area01_trigger”.

After that we need to set the “interval” for how often our check should be made
after the trigger is activated (which we’ll cover later). This is set in seconds, and let’s
says that it’s an important check, so let’s set it to “0.3”.

Note: The interval value depends on the size off the area and how important it is that the area detects
the player as soon as possible when he/she enters. If the area is small and the interval is large, the
player may pass through the area before the check is run, and then it won’t detect the player’s
presence. On the other hand if the interval is set to a small number it will run more frequently and take
up more processing power which could be useful in other areas. So it’s a balance act to optimize the
needed interval time for each trigger.

Next we need to a “condition” child element. It should be of the type we want the
trigger to use when deciding if its given event should be called to execute. So we’ll
set its “type” attribute to “UnitInLocation”, as we want to check for the presence of
units inside the location we created in the map editor. This specific type has a required
attribute called “location”, which we have to set to the name we gave the location
inside the map editor when we defined it, that is now stored inside the world.xml, so
the script knows which defined location to check inside.

Tip: You can use the same area in unlimited amounts of conditions, all looking for different groups,
vehicles or amounts.

 10

Next, as we want to check against the player team, we’ll use an optional attribute
called “player_type”, which we give the value “campaign_team” that is the global
variable for any member of the player team (all the different optional attributes and
possible global attributes they use are listed in chapter 5).

As a last optional attribute the condition requires one of the many comparing
attributes that this element uses to determine if the condition is true or false. Let’s use
the simplest one called “amount”, which uses an exact value to compare against the
current amount of members from the given group that are inside the given location.
We will give this attribute the value “1” as we want the trigger to activate the given
even once the first member of the player team enters the location. We could also give
the attribute the value “all” if we wanted the condition to require the entire group to
be inside the location for it to return true when checked. Another way we could use
this condition type is to require that no member of the given group is inside the
location to return true when checked, and then we would set it to “0”.

Note: Don’t set it to a bigger integer than the group has members or it won’t be able to ever return
true when checked, which then makes the trigger using the condition unable to ever run successfully.

As the last part of the trigger we need to tell it which event to call if the above
condition is checked to be true. For this we use an element called “event” (which is
NOT the same “event” we use as a base element). It has only one required attribute
called “name”, which we give the name of the event to call if the triggers conditions
are true. Let’s call this “show_enemy_group01” which describes what it will do, and
we’ll create that next.

Finally don’t forget to close the tags.

Enemy Activation Event
Now we’ll create the event that is called by the trigger and does the actual work of
activating the enemy group. It’s a normal base “event”, which will never execute if
no trigger or other event tells it to do so.

That part of the script looks like this:
<event name=”show_enemy_group01”>
 <element type=”ActivateGroup” group_id=”enemy_group01”/>
</event>

First we create the “event” and set its “name” attribute. Set it to the same name as
used for the trigger to call if it’s condition where true, “show_enemy_group01”.

Next we’ll add an “element” that is going to perform the action we where looking
for, so set its “type” attribute to “ActivateGroup”. This element type can only do
one thing; spawn in groups defined in world.xml to the game world and tell that
group to start its behavior set in the map editor. For this it requires that we set its
“group_id” attribute to the name of the group we want to show, which is the same as
the name we gave the group when we created it in the map editor, “enemy_group01”.

Then close the “event” tag and it’s done.

 11

Trigger Activation Event
Finally we need to activate every trigger we want to start performing their checks.
There is a specific “element” type, which can only activate triggers, but as we
learned in chapter 2, “element” only work inside an “event”. Which event to use
depends on when during the mission that the area should be activated? In this
example, let’s say that the area is close to when the player is inserted at the beginning
of the mission and therefore we’ll activate it inside the special event named
“start_mission”, which was covered at the end of chapter 2.

Note: The element can be used inside any event in this mission.xml.

That part of the script looks like this:
<event name=”start_mission”>
 <element type=”StartTrigger” name=”enemy_area01_trigger”/>
</event>

First add a child element of the type “element” inside the event tags. The “type” of
element we need now is called “StartTrigger” which can only activate any given
trigger. This element type also requires an attribute called “name”, where we must
enter the name we gave to our trigger when we defined it.

Now let’s just close our tags and where done. We have now created a script that will
detect is a member of the player team is inside a given location and if so, activates an
enemy group.

Alternative Location Conditions
If you want to create the same script but let a non-player group or a vehicle activate
the trigger, it’s just as easy but with one different attribute in the condition element.

Player version (as described in this chapter):
 <condition type=” UnitInLocation” location=”enemy_area01”
 player_type=”campaign_team” amount=”1”/>

AI Group version:
 <condition type=” UnitInLocation” location=”enemy_area01”
 group_id=”group_01” amount=”1”/>

Vehicle version:
 <condition type=” UnitInLocation” location=”enemy_area01”
 vehicle_id=”tank_01” amount=”1”/>

As you can see the only difference is the use of the attribute “group_id” or
“vehicle_id” instead of the attribute “player_type”. Great, now we know how to
set those up as well.

Next we’ll take a look at using objectives before we get in deep with all the condition
and element types available in GRAW2.

 12

Chapter 4: Objective UI

Ok. Now you should know a little more about how the syntax works, so I won’t
describe everything at the same level as in the previous chapter but will of course
explain anything new and the function of the script itself.

Our goal in this chapter is to create an objective with headline, descriptive text and a
waypoint marker in the HUD. We want to update the objective during the mission and
finally declare the objective completed. Important to understand is that nothing that
we create in this chapter will have anything to do with what the actual objective is, in
other words, what activates it, what is required to update it, or what is required to
complete it? Nor will the script in this chapter work by itself. All we’re going to do is
create the parts that the player can see during the mission, the HUD and map
elements. For the objective to actually do anything and drive the mission forward,
you’ll need to use triggers and other events based on your mission design. All
available trigger conditions will be covered in detail in chapter 5.

We really wouldn’t need to enclose each of the elements covered in this chapter inside
their own events, but we’ll do that anyhow to show that they are used in different
parts of the script. In your mission you can, and probably will, use them inside any
event you want, combined with other elements.

Here is the script that we’ll need to reach the goal of this chapter:
<event name=”add_objective1”>
 <element type=”Objective” id=”obj1” state=”add”
 headline_id=”mx_obj1_head” txt_id=”mx_obj1_txt”
 waypoint_id=”mx_obj1_wp” waypoint=”10171 -9296 106”/>
</event>

<event name=”update_objective1”>
 <element type=”Objective” id=”obj1” state=”update”
 headline_id=”mx_obj1_head” txt_id=”mx_obj1_txt2”
 waypoint_id=”mx_obj1_wp” waypoint=”10171 -9296 106”/>
</event>

<event name=”complete_objective1”>
 <element type=”Objective” id=”obj1” state=”completed”/>
</event>

To do this we need nothing from the world.xml, but we need to have the coordinates
to where we want the waypoint marker to appear. One way of getting this is to use the
panel inside the map editor, activated by pressing “/” or your numeric keypad, and
moving your camera to around the area where you want it to be placed and then
writing down the coordinates seen in the lower right corner. Another way is to place a
prop where you want it to be, name it something like “objective_marker_pos”, save
your file and them open the world.xml in you XML editor and do a search for
“objective_marker_pos”. Then you’ll find its coordinates listed next to it’s entry in
there, copy them to somewhere safe and then back in the map editor, delete the prop.

 13

Add Objective Event
The first thing we need is an event that adds the objective for the player to see.

That part of the script looks like this:
<event name=”add_objective1”>
 <element type=”Objective” id=”obj1” state=”add”
 headline_id=”mx_obj1_head” txt_id=”mx_obj1_txt”
 waypoint_id=”mx_obj1_wp” waypoint=”10171 -9296 106”/>
</event>

For this we create a simple event and give it a name that is descriptive so we later can
easily find it in our script. This you know by now so let’s concentrate on the content
element.

We only need one element to initiate an objective for the player and it’s of the type
“objective”. This element type has many attributes that are optional to use
depending on what you want to do with the objective itself.

First we’ll set the attributes that “objective” always requires, which is “id” and
“state”. “id” is the name that we’ll use inside the script to add, update and remove
the objective, lets call this “obj1”. In “state” we determine what’s going to happen
to the objective GUI, and as we now want to add it as a new objective, set it to “add”.

Then we want to tell the game which strings to use as objective headline and objective
description. This is done by setting the attributes “headline_id” and “txt_id”,
which require you to enter the name of string variables created in the strings.xml
connected with your mission, which you don’t have to use. There is another option to
enter headline and description to an objective, that doesn’t require a strings.xml
file. Instead of using “headline_id” you simply use the attribute “headline” and
enter the text you want inside the quotation marks. The same thing can be done for the
description, when “txt” is used instead of “txt_id”. The strings.xml files are used
to allow for multi language support.

That was it for the objective part. Now we need to set the attributes for the waypoint
marker. The first of those is “waypoint_id”, which works the same as the other string
attributes, but holds the string that will be visible under the waypoint in the HUD.
This attribute also accepts text written directly between the quotation marks, if that
text isn’t matching the name of a string variable in the strings.xml. The second
attribute needed is “waypoint”, which requires the coordinates of where the waypoint
should appear in the game world that we got earlier somehow. These are entered as
three floats in the order “x”, “y” and “z”. Now all that is left is closing all tags.

 14

Update Objective Event
Now the player can see the objective in the list, read the description and see the
waypoint on the map and in the HUD. But during this objective the description will
change when a given trigger condition is set. This could also be used to move the
waypoint marker by simply adding new coordinates for it, but we’ll leave it this time.

That part of the script looks like this:
<event name=”update_objective1”>
 <element type=”Objective” id=”obj1” state=”update”
 headline_id=”mx_obj1_head” txt_id=”mx_obj1_txt2”
 waypoint_id=”mx_obj1_wp” waypoint=”10171 -9296 106”/>
</event>

Create a new event and give it a good name. We’ll only need one element as contents
again, and once again we’ll set the “type” to “objective”. As we want to update the
objective we added earlier, we’ll have to set “id” the same as we did before. Then
we’ll set “state” to “update”. Next we’ll use the “headline_id” and “txt_id”
again. As we don’t want to change the objective headline, we’ll set the same string for
that as before, but we want to change the description, and so we simply set another
value to the “txt_id”.

As we don’t want to change the objective waypoint, we’ll set all those value the same
again, and finish by checking that all tags are closed.

Completing Objective Event
Finally we want to create the event that declares the objective completed in the list
and removes the waypoint.

That part of the script looks like this:
<event name=”complete_objective1”>
 <element type=”Objective” id=”obj1” state=”completed”/>
</event>

Create yet another new event and give it a good name. Once again we’ll only need
one element as content with the “type” set to “objective”. Then again tell the game
which objective you want to manipulate by setting “id” to the name we gave it when
first adding it. Finally to remove the objective and the waypoint, we’ll set “state” to
“completed”. The reason both the objective was set as complete and the waypoint
was removed is that they have the same “id”. I’ll show next how to do this with
separate waypoint controls. But first, close all tags, and we’re done with the goal for
this chapter.

 15

Separate Waypoint Control
For some objectives you’ll probably want more then one waypoint marker and/or
have separate control over it in the script. To get the later you’ll need to have a
separate id for just the waypoint marker. This is done by defining the objective and
the waypoint in separate elements.

Objective and waypoint with a single id:
<event name=”add_objective1”>
 <element type=”Objective” id=”obj1” state=”add”
 headline_id=”mx_obj1_head” txt_id=”mx_obj1_txt”
 waypoint_id=”mx_obj1_wp” waypoint=”10171 -9296 106”/>
</event>

Objective and waypoint with separate ids:
<event name=”add_objective1”>
 <element type=”Objective” id=”obj1” state=”add”
 headline_id=”mx_obj1_head” txt_id=”mx_obj1_txt” />
 <element type=”Objective” id=”obj1_wp” state=”add”
 waypoint_id=”mx_obj1_wp” waypoint=”10171 -9296 106”/>
</event>

If you want to add multiple waypoints for an objective, you simply do it by adding an
additional element for each additional waypoint.

Objective with two waypoints:
<event name=”add_objective1”>
 <element type=”Objective” id=”obj1” state=”add”
 headline_id=”mx_obj1_head” txt_id=”mx_obj1_txt” />
 <element type=”Objective” id=”obj1_wp1” state=”add”
 waypoint_id=”mx_obj1_wp” waypoint=”10171 -9296 106”/>
 <element type=”Objective” id=”obj1_wp2” state=”add”
 waypoint_id=”mx_obj1_wp” waypoint=”10500 -8256 -90”/>
</event>

When you define everything with separate ids, you also have to remember to remove
them all at the end with separate elements.

Strings.xml
The strings.xml file is something that all original missions use to define strings
containing the text to be shown during the mission, including the briefing text seen in
single player. These files can be defined in the level folder, check the tutorial “GRAW2:
The Editor” for info on how to do that and more info on strings.

String XML files uses a very simple syntax with one base element containing all
string variable elements.

Example of string.xml contents:
<stringset>
 <string id=”mx_obj1_head” value=”Search and destroy ADA unit”/>
 <string id=”mx_obj1_txt” value=”Place c4 explosives on ADA unit.”/>
 <string id=”mx_obj1_wp” value=”ADA location”/>
</stringset>

 16

Chapter 5: Trigger Conditions

Now that we are really starting to understand the syntax, we need more trigger
conditions to be able to set up different situations in our mission flow.

This chapter will only cover what condition types are available for triggers and what
attributes they require. The basic syntax for triggers was covered in chapter 2, and
won’t be repeated here.

Player Type Attribute
Some conditions have a special group identification attribute called “player_type”.
This attribute is created to make it easier to create checks against the player or
players. There are four different values that this attribute accepts, which are
“campaign_team”, “team_a”, “team_b” and “team_all”.

campaign_team Used for the single player and campaign coop player team.
team_a Used for the ghost team in all other MP modes.
team_b Used for the rebel team in all other MP modes.
team_all Used for both sides in all other MP modes.

Conditions
Always Always returns true.
EvaluateVar Variable value condition.
InUse Usable object in use condition.
Never Always returns false.
PlayersNotPermanentlyDead Players permanently dead condition.
PlayersNotSpawnedYet Players not yet spawned condition.
ServerSetting Server settings condition.
ServerSideVar Server settings condition.
SoldiersKilled Group members killed condition.
UnitDestroyed Destroyed prop or static condition.
UnitHasWeapon Unit or group carrying specific weapon condition.
UnitInCombat Group members in combat condition.
UnitInLocation Players, vehicles or AI in location condition.
UnitInTransport Players or AI in vehicle condition.
VehicleDestroyed Destroyed vehicle condition.

 17

Always Condition
This condition type always returns true when checked, which can be useful inside
ping pong triggers.

<condition type=”Always”/>

type Always

EvaluateVar Condition
This condition type is used to compare the value stored inside a variable with a given
value.

<condition type=”EvaluateVar” var=”value_1” equal=”2”/>
<condition type=”EvaluateVar” var=”value_1” less_than=”1”/>

type EvaluateVar
var Name of variable to check against.

Requires at least one of these optional attributes:
equal Return “true” if value found is equal to set value.
less_than Return “true” if value found is less than set value.
greater_than Return “true” if value found is greater than set value.

InUse Condition
This condition type is used to check if a useable object is currently being used or not,
by a player or an AI soldier.

<condition type=”InUse” name_id=”unit_01” state=”true” />

type InUse
name_id Name of unit to check if it’s in use.
state State to check against units use state, “true” or “false”.

Never Condition
This condition type never returns true when checked, which can be useful inside ping
pong triggers.

<condition type=”Never”/>

type Never

 18

PlayersNotPermanentlyDead Condition
This condition type is used only in MP game mode rules and checks the number of
currently not permanently dead players on a given team, against a given value.

<condition type=”PlayersNotPermanentlyDead” side=”1” equal=”0”/>

type PlayerNotPermanentlyDead
side Side to check for permanently dead players, “1” or “2”.

Requires at least one of these optional attributes:
equal Return “true” if value found is equal to set value, set to

“all” for entire team.
less_than Return “true” if value found is less than set value.
greater_than Return “true” if value found is greater than set value.

PlayersNotSpawnedYet Condition
This condition type is used only in MP game mode rules and checks the number of
players on a given team which have joined but not yet spawned, against a given value.

<condition type=”PlayersNotSpawnedYet” side=”2” equal=”0”/>

type PlayerNotSpawnedYet
side Side to check for permanently dead players, “1” or “2”.

Requires at least one of these optional attributes:
equal Return “true” if value found is equal to set value, set to

“all” for entire team.
less_than Return “true” if value found is less than set value.
greater_than Return “true” if value found is greater than set value.

 19

ServerSetting Condition
This condition type is used only in MP and checks a given server setting against a
given value, which can be a number or a string depending on the setting to be
checked.

<condition type=”ServerSetting” name=”max_players” greater_than=”1”/>

type ServerSetting
name Name of server setting to check.

Requires at least one of these optional attributes:
equal Return “true” if value found is equal to set value.
less_than Return “true” if value found is less than set value.
greater_than Return “true” if value found is greater than set value.

ServerSideVar Condition
This condition type is used only in MP and checks a given server side variable against
a given value for a given player team.

<condition type=”ServerSideVar” name=”_round_death” side=”1”
 greater_than=”0”/>

type ServerSetting
name Name of server setting to check.
side Number of side to check on, “1” is ghost and “2” is rebel.

Requires at least one of these optional attributes:
equal Return “true” if value found is equal to set value.
less_than Return “true” if value found is less than set value.
greater_than Return “true” if value found is greater than set value.

SoldiersKilled Condition
This condition type is used to check if a group, or one or more members of a group,
has been killed against a given value.

<condition type=”SoldiersKilled” group_id=”group_01” amount=”1”/>
<condition type=”SoldiersKilled” group_id=”group_02” amount=”all”/>

type SoldiersKilled
group_id Name of group to check for casualties.
amount Number of casualties required, set to “all” for entire group.

 20

UnitDestroyed Condition
This condition is used to check if a prop or static has been destroyed.

<condition type=”UnitDestroyed” id=”unit_01”/>

type UnitDestroyed
id Name of prop or static to check if destroyed.

UnitHasWeapon Condition
This condition is used to check if a group member carries or uses a specific weapon.

<condition type=”UnitHasWeapon” weapon=”predator”
 player_type=”campaign_team” equipped=”true”/>
<condition type=”UnitHasWeapon” weapon=”m61_thrower”
 player_type=”campaign_team” only_leader=”true” equipped=”true”/>

type UnitHasWeapon
weapon Unit name of weapon to check for.

Requires at least one of these optional attributes:
group_id Used to enter a group name to check for weapon.
player_type Used to enter a player group, see chapter 6, to check for

weapon.
name_id Used to enter name of a specifically named unit.

Optional attributes:
only_leader Check only leader in group, “true” or “false”.
equipped Check also if currently equipped to use, “true” or “false”.

 21

UnitInCombat Condition
This condition is used to check how many members of a group, or a vehicle, that are
in combat mode or not, against a given value.

<condition type=”UnitInCombat” combat=”true” group_id=”group_01”
 amount=”all”/>
<condition type=”UnitInCombat” combat=”false” vehicle_id=”tank_01”
 equal=”1”/>

type UnitInCombat
combat Which group members to count, those in combat or those

not, set to “true” or “false”.

Requires at least one of these optional attributes:
group_id Used to enter a group name to check members inside.
vehicle_id Used to enter a vehicle name to check.

Requires at least one of these optional attributes:
equal or amount Return “true” if value found is equal to set value, set to

“all” for entire group.
less_than Return “true” if value found is less than set value.
greater_than Return “true” if value found is greater than set value.

 22

UnitInLocation Condition
This condition type is used to check if a given amount of units are inside a location.

<condition type=”UnitInLocation” location=”area_01”
 player_type=”campaign_team” less_than=”3”/>
<condition type=”UnitInLocation” location=”area_01”
 vehicle_id=”tank_01” equal=”1”/>
<condition type=”UnitInLocation” location=”area_01”
 group_id=”group_01” greater_than=”my_variable”/>
<condition type=”UnitInLocation” location=”area_01” slots=”team_a”
 amount=”5”/>
<condition type=”UnitInLocation” location=”area_01” slots=”2,3”
 amount=”1”/>

type UnitInCombat
location Which location to check for units inside.

Requires at least one of these optional attributes:
player_type Used to enter a player team, see chapter 6.
group_id Used to enter a group name to check members inside.
vehicle_id Used to enter a vehicle name to check.
name_id Used to enter a specifically named soldier.
slot Used to enter one or more slots to check against, see list.

Available slots to check, if not using slot numbers directly:
beeings mex_aim_slots us_aim_slots

static_world team_a team_b

both_teams vehicle_no_team all_vehicles

vehicle_team_a vehicle_team_b pickups

cover_static cover_dynamic cover_static_small

Requires at least one of these optional attributes:
equal or amount Return “true” if value found is equal to value, set to “all”

for entire group.
less_than Return “true” if value found is less than value.
greater_than Return “true” if value found is greater than value.
greater_or_equal Return “true” if value found is greater then or equal to value.

Optional attributes:
only_leader Check only for leader, “true” or “false”.

To be used with “player_type” or “group_id”.

 23

UnitInTransport Condition
This condition is used to check how many AI and/or players are inside a given
vehicle. It’s optional to specify so that only members from a specific group or team
are included in the count.

<condition type=”UnitInTransport” vehicle_id=”panhard_01” equal=”0”/>
<condition type=”UnitInTransport” vehicle_id=”helo_01”
 group_id=”group_01” greater_than=”0”/>
<condition type=”UnitInTransport” vehicle_id=”helo_01”
 group_id=”group_01” less_than=”all”/>
<condition type=”UnitInTransport” vehicle_id=”helo_01”
 player_type=”campaign_team” equal=”all”/>

type UnitInTransport
vehicle_id Name of vehicle to check inside.

Requires at least one of these optional attributes:
equal or amount Return “true” if value found is equal to value, set to “all”

for entire group.
less_than Return “true” if value found is less than value.
greater_than Return “true” if value found is greater than value.
greater_or_equal Return “true” if value found is greater then or equal to value.

Optional attributes:
player_type Used to enter a player team, see chapter 6.
group_id Used to enter a group name to check members inside.
name_id Used to enter a specifically named soldier.
only_leader Check only for leader, “true” or “false”.

To be used with “player_type” or “group_id”.
save_count Used to give a variable which will store the number of

soldiers found inside the vehicle.

VehicleDestroyed Condition
This condition type is used to check if a vehicle has been destroyed. This condition
can be used with the “equal” variable, but as vehicles can’t be grouped it’s never
needed.

<condition type=”VehicleDestroyed” vehicle_id=”tank_01”/>

type VehicleDestroyed
vehicle_id Name of vehicle to check if destroyed.

 24

AND Conditions
Many times you’ll want to make triggers that require more then one condition. AND
conditions are easy to do in GRAW2 with a special element type, “if_all”, which
can use any type of conditions as contents. An unlimited number of conditions can be
listed after each other as this elements content, and they will all each be required to
check as true before the entire block will pass as true.

For example if we want to have conditions for “main_prop” to have been destroyed
AND the entire “campaign_team” to be in “area_01” AND a group called “a1” to be
inside their transport “truck_01” for an event to run, it would look like this:

That AND trigger example looks like this:
<!--Condition 1, 2 AND 3-->
<trigger name="truck_leave_trigger" interval="0.4">
 <if_all>
 <condition type="UnitDestroyed" id="main_prop"/>
 <condition type="UnitInLocation" location="area_01"
 player_type="campaign_team" amount="all"/>
 <condition type="UnitInTransport" vehicle_id="truck_01"
 group_id="a1" equal="all"/>
 </if_all>
 <event name="truck_leave"/>
</trigger>

OR Conditions
Creating OR conditions are basically done the same way with the help of the
“if_any” element. Like the “if_all” element, it can use an unlimited number of
conditions spanning all different types as contents.

For example if you want “tank_01" OR "tank_02" to be destroyed OR have group
"vip" in "hawk_01" as a trigger condition for an event to run, it would look like this:

That OR trigger example looks like this:
<!--Condition 1, 2 OR 3-->
<trigger name="go_wave2_trigger" interval="0.4">
 <if_any>
 <condition type="VehicleDestroyed" vehicle_id="tank_01"/>
 <condition type="VehicleDestroyed" vehicle_id="tank_02"/>
 <condition type="UnitInTransport" vehicle_id="hawk_01"
 group_id="vip" equal="all"/>
 </if_any>
 <event name="go_wave2"/>
</trigger>

 25

NOT Conditions
Of course we can also create negating conditions of any type. To do this in GRAW2
we use an element called “if_none”, which like the previous elements can have
unlimited conditions of all types as its contents.

For example if you want neither “tank_01” nor “unit_01” to be destroyed for a
special situation script to run, it would look like this:

That NOT trigger example looks like this:
<!--Condition NOT 1 AND NOT 2-->
<trigger name="special_event_trigger" interval="0.4">
 <if_none>
 <condition type="VehicleDestroyed" vehicle_id="tank_01"/>
 <condition type="UnitDestroyed" id="unit_01"/>
 </if_none>
 <event name="special_event"/>
</trigger>

AND OR NOT Conditions
Of course you have already understood how to combine the three element types above
to create an AND OR NOT condition, but I'll show an example on this anyhow as it can
still get quite complicated fast.

For example if you want "tank_01" to be destroyed AND have "vip" in "hawk_01" to
trigger the event, OR you want "tank_02" to be destroyed AND “tank_01” NOT to be
destroyed to trigger the same event to execute, it would look like this:

That AND OR NOT trigger example looks like this:
<!--Condition (1 AND 2) OR (3 AND NOT 4)-->
<trigger name="go_tank03_trigger" interval="1.0">
 <if_any>
 <if_all>
 <condition type="VehicleDestroyed" vehicle_id="tank_01"/>
 <condition type="UnitInTransport" vehicle_id="hawk_01"
 group_id="vip" equal="all"/>
 </if_all>
 <if_all>
 <condition type="VehicleDestroyed" vehicle_id="tank_02"/>
 <if_none>
 <condition type="VehicleDestroyed" vehicle_id="tank_01"/>
 </if_none>
 </if_all>
 </if_any>
 <event name="go_tank03"/>
</trigger>

As you can see the trigger system in GRAW2 can be used with very complicated
conditions to allow very clever scripting which can add enormously to the game
experience. But the basics of triggers and their conditions weren’t too hard so next
we’ll take a look at the long list of event elements available in GRAW2, which will
open the doors wide to the possibilities of mission scripting in this game.

 26

Chapter 6: Event Element Types

Now that we can create all types of trigger conditions the game engine offers, we need
to know what elements we can use in the events that get triggered.

This chapter will only cover the available event elements and what their required or
optional attributes are. The basic syntax for events was covered in chapter 2, and
won’t be repeated here.

Start Time Attribute
All elements have an optional attribute called “start_time”. It can be set to decide
the delay in running each child element after their event is executed. It is set in
seconds, and if this attribute is not used it will default to “0.0”, and the element will
run directly after the event is triggered. This attribute will not be listed on each
element type as it would be very redundant.

It is a good idea to divide the elements inside an event by giving them different
“start_time”, so that they all won’t run at the same time which can cause the game
to lag or temporarily freeze up all together due to the amount of information it has to
process at the same time.

Player Type Attribute
Just like with conditions, some elements have the special group identification attribute
called “player_type”. This attribute is created to make it easier to create checks
against the player or players. There are four different values that this attribute accepts,
which are “campaign_team”, “team_a”, “team_b” and “team_all”.

campaign_team Used for the single player and campaign coop player team.
team_a Used for the ghost team in all other MP modes.
team_b Used for the rebel team in all other MP modes.
team_all Used for both sides in all other MP modes.

Member Type Attribute
Another special attribute used in multi player to designate each member on one of the
sides, or both sides. For that purpose it accepts three different values, which are
“member_a”, “member_b” and “member_all”.

member_a Used for each member of the ghost team in all MP modes.
member_b Used for each member of the rebel team in all MP modes.
member_all Used for all member in all MP modes.

 27

Element Types
ActivateCypher Show Cypher.
ActivateGroup Show group and start set behaviour.
ActivateRandomGroup Randomly show 1 of up to 4 groups.
ActivateVehicle Show vehicle.
Actor Run NarCom sequence.
AddInsertion Adds starting location to mission.
AddRoundTime MP, adds time to current round time.
AllowSpawn MP, enable or disable spawn per side.
AlterGroupStats Alter stats for group.
AlterTeamControl Add AI to, or remove from, the player team.
BreakAllEvents Stop all other events from completing their executions.
BreakEvent Stop selected event from completing its execution.
Calculate Create and/or manipulate variables.
CenterLocation Move location to given position.
ChangeMission End mission in success and setup next campaign mission.
ChangeState Modify player control of character in game.
CinematicAddEvent Add camera and effects to cinematic.
CinematicAddMarker Add camera and path to cinematic.
CinematicPlay Start cinematic.
ColorSmoke MP, set color of smoke in HH.
Composition Run composition.
CreateUnit Create any unit inside the game.
DebugString Show debugging text, requires a console.
DisableUnit Removes and deactivates unit.
DisplayBestPlayer MP, display winner at end or round in PvP.
EnableUnit Shows and activates unit.
EndRound MP, end current round.
EnvAreaDefault Set default mission environment effect.
ExitPassengers Make passengers exit any vehicle.
ExplodeVehicle Destroy selected vehicle.
ForceMusic Force mood or intensity of music.
ForceSpawn MP, force players to spawn per side.
GameOver End mission in failure.
GetGameData MP, get data from ongoing game.
GetGlobal Get data from global variable.
GiveLife MP, set number of respawns allowed per side.
GivePoints MP, award point to players.
MakeAttachable Make object active to allow player to place C4.

 28

MissionCommand Activate a mission command area.
Objective Manipulate objective and waypoint GUI
OrderCar Give order to cars.
OrderGroup Give order to group.
OrderHeli Give order to helicopters.
OrderTank Give order to tanks.
OrderUse Give group to use unit.
PlayCustomAnimation Play custom animation on given member of a group.
PlayDynamicMusic Start dynamic music.
PlayerAction Enable action message for player.
PlayMemoMusic Play given music.
PlaySound Play sound to players in given location.
PlayWorldSound Play sound at given position in world.
RemoveGroup Hide group, conditions see them as killed.
RemoveMissionCommand Remove a mission command area.
RemoveVehicle Hide vehicle, conditions see them and their crew as killed.
ReturnToMenu Declare mission success and return to main menu.
SaveGame Save current game status in SP.
SaveLoad Enable or disable save and load capability.
ServerData MP, get or set server settings.
SetActionSound MP, play sound to player at a certain time.
SetCanTakeOrders Tell vehicle and support to take orders from player.
SetEnvironment Activate environment.
SetEventStatus Change event attributes.
SetGlobal Set global variable.
SetKillScoreLocation Define a location where kills are reward extra points.
SetHeliCloseDoors Tell helicopter to close doors.
SetHeliDrop Tell helicopter to allow characters to fast-rope.
SetHeliDropRope Tell helicopter to lower ropes for fast-rope insertion.
SetHeliStand Tell helicopter to prepare for drop and open doors.
SetObjectiveABC MP, used to control state of objective A, B & C interface.
SetPlayerControlled Toggle player control over a group.
SetRoundTime MP, replace current round time.
SetSideScore MP, set score for each side.
SetSlot Change slot for unit.
SetSpawnLocation MP, define spawn location for each side.
SetToSupply Give supply capability to a vehicle.
SetTransportType Enable vehicle to insert or extract teams.
SetWindDirection Set the main direction of wind in degrees.

 29

SetWindEnable Activate or deactivate wind.
SetWindSpeed Set the speed of wind.
SetWindTilt Set the tilt of wind in degrees.
ShowMessage Display message to all players.
SimulatePlayerAction Simulate player pressing action button in cinematic.
StartPlayerTrigger Activate a player trigger.
StartTrigger Activate a trigger.
StopAllTriggers Deactivate all triggers.
StopMusic Stop playing music.
StopPlayerTrigger Deactivate a player trigger.
StopTrigger Deactivate a trigger.
StoreUnits Store all units found inside a location into a variable.
TagUnits Place or remove tags on units.
TeleportGroup Move group from one location to another.
TriggerEvent Call another event to execute.
TriggerEventIfVar Call another event to execute if variable condition is true.
TriggerRandomEvent Randomly trigger 1 of up to 4 events.
UnitSequence Run animated sequence imbedded in unit.

ActivateCypher Element
This element is used to show a Cypher and activate player control.

<element type=”ActivateCypher” vehicle_id=”cypher”/>

type ActivateCypher
vehicle_id Name of Cypher to activate.

ActivateGroup Element
This element is used to show a group to the game world and start its set behavior.

<element type=”ActivateGroup” group_id=”guards01”/>

type ActivateGroup
event Name of group to show.

 30

ActivateRandomGroup Element
This element is used to add replay ability to the missions as it randomly activates a
group from a given list depending on a random value compared to a given chance list.

You only need to use one group attribute and one chance attribute for this element to
work. The values given to the chance attributes are the upper limit for its connected
group to get activated, RPG players will recognize this as a D100 list.

For example if “chance1” is set to “40”, “chance2” is set to “55”, “chance3” is set to
“74” and “chance4” is set to “90”, then:
”group1” will get activated if the random number is 0 or up to 40,
”group2” will get activated if the random number is greater then 40 and up to 55,
”group3” will get activated if the random number is greater then 55 and up to 74,
”group4” will get activated if the random number is greater then 74 and up to 90,
and no group at all will get activated if the random number is greater then 90.

<element type=”ActivateRandomGroup” group1=”enemy12 chance1=”25”
 group2=”enemy2” chance2=”50” group3=”enemy3” chance3=”75”
 group4=”enemy4” chance4=”100”/>

<element type=”ActivateRandomGroup” group1=”enemy1” chance1=”33”
 group2=”enemy2” chance2=”66” group3=”enemy3” chance3=”100”/>

<element type=”ActivateRandomGroup” group1=”enemy1” chance1=”50”
 group2=”enemy2” chance2=”100”/>

<element type=”ActivateRandomGroup” group1=”enemy1” chance1=”50”/>

type ActivateRandomGroup
group1 Name of first group that could get show.
chance1 Number between 1 and 100, percent chance for “group1”.

Optional attributes, but each group* requires you to use its chance* counterpart:
group2 Name of second group that could get show.
group3 Name of third group that could get show.
group4 Name of forth group that could get show.
chance2 Number between chance1 and 100, chance for “group2”.
chance3 Number between chance2 and 100, chance for “group3”.
chance4 Number between chance3 and 100, chance for “group4”.

ActivateVehicle Element
This element is used to show a vehicle, if set to use “sequence spawn” in map editor.

<element type=”ActivateVehicle” vehicle_id=”apc01”/>

type ActivateVehicle
vehicle_id Name of vehicle to show.

 31

Actor Element
This element is used to run NacCom sequences.

<element type=”Actor” actor=” m01_insert_jos”/>

type Actor
actor Name of NarCom sequence to show.

AddInsertion Element
This element is used to add an insertion alternative for the player in the briefing. Each
insertion also triggers their own event when selected and the mission starts, so each
insertion provides a unique starting point for the mission script.

<element type="AddInsertion" name="insert_01"
 map_position="0.2 0.793 1" trigger_event="single_1"
 headline_id="mxx_insertion_header1" txt_id="mxx_insertion_txt1"
 coop="false" location="single_1" start_time="1.0"/>

<element type="AddInsertion" name="insert_02"
 map_position="0.1 0.75 0.0" trigger_event="single_2"
 headline_id="mxx_insertion_header2" txt_id="mxx_insertion_txt2"
 coop="false" vehicle_id="insert_2" start_time="1.0"/>

<element type="AddInsertion" name="insert_01_coop"
 map_position="0.26 0.793 1" trigger_event="coop_1"
 headline_id="mxx_insertion_header1" txt_id="mxx_insertion_txt1"
 coop="true" location="coop_1" start_time="0.5"/>

<element type="AddInsertion" name="insert_02_coop"
 map_position="0.1 0.75 0.0" trigger_event="coop_2"
 headline_id="mxx_insertion_header2" txt_id="mxx_insertion_txt2"
 coop="true" vehicle_id="insert_2" start_time="0.5"/>

type AddInsertion
name Internal name for insertion.
map_position Coordinates for insertion on briefing map, in %.
trigger_event Event to trigger when insertion selected and mission starts.
headline_id String to be displayed as name for insertion.
txt_id String to be displayed as description text for insertion.
coop Set if insertion is to be used in SP or Coop.

Requires one of these optional attributes:
location Name of location to use when inserting team on foot.
vehicle_id Name of vehicle to use to insert team inside.

 32

AddRoundTime Element
This element is used to add additional time to the round time which is currently
remaining. Only used in MP modes that have time limits.

<element type=”AddRoundTime” time=”180”/>

type AddRoundTime
time Amount of seconds to add to the current round time.

AllowSpawn Element
This element is used to turn on or off the ability to each side to spawn or respawn in
all MP modes.

<element type=”AllowSpawn” side=”1” when=”always”
 after_start=”true”/>

<element type=”AllowSpawn” side=”2” when=”timed” frequency=”25”
 forced=”true”/>

<element type=”AllowSpawn” side=”1” when=”now” after_start=”false”/>

type AllowSpawn
side Side to give spawn state, “1” is US and “2” is Mex.
when When to spawn, “now”, “always” or “timed”.

Required attribute only if “when” is set to “timed”:
frequency Set how often spawn is allowed in seconds.

Optional attributes:
forced Forces player to spawn when time is right.
where How to use multiple assigned locations. “cycled” to cycle

them in a loop, or “random” to use them randomly.
after_start Allow players to join after the game has stared.

 33

AlterGroupStats Element
This element is used to change the status of group members or alter their stats.

<element type="AlterGroupStats" group_id="group_01"
 invisible="true"/>

<element type="AlterGroupStats" group_id="group_01"
 invisible="false"/>

<element type="AlterGroupStats" group_id="group_01"
 blind_and_deaf="true" pacifist="true"/>

<element type="AlterGroupStats" group_id="group_01"
 blind_and_deaf="false" pacifist="false"/>

<element type="AlterGroupStats" group_id="group_01" max_health="4"
 health="4"/>

<element type="AlterGroupStats" group_id="group_01"
 max_health="50000" health="50000"/>

<element type="AlterGroupStats" group_id="group_01" combat="true"/>

<element type="AlterGroupStats" group_id="group_01"
 gun_restricted="true" blind_and_deaf="true"/>

<element type="AlterGroupStats" player_type="campaign_team"
 gun_restricted="true"/>

type AlterGroupStats

Requires one of these optional attributes:
group_id Name of group to assign changes to.
player_type See beginning of this chapter for details.

Requires at least one of these optional attributes:
invisible Decides if group is detectable by other AI.
pacifist Decides if the weapon in a group do damage.
combat Force group in or out of combat mode.
blind_and_deaf Decides if a group can detect enemies.
gun_restricted Decides if a group can raise their weapons and use them.
health Set health amount for each soldier in group.
max_health Set maximum allowed health for each soldier in group.

 34

AlterGroupControl Element
This element is used to move team members in and out of player control by moving
them to a spare team.

<element type=”AlterTeamControl” index=”1”
 action=”campaign_to_spare”/>

<element type=”AlterTeamControl” index=”0”
 action=”spare_to_campaign”/>

type AlterTeamControl
index Which team member to move, “0”, “1”, “2” or “3”.
event Which move to make, “campaign_to_spare” takes an AI

from player team and “spare_to_campaign” returns him.

BreakAllEvent Element
This element is used to break the execution of all events currently being executed.

<element type=”BreakAllEvent”/>

type BreakAllEvent

BreakEvent Element
This element is used to break the execution of any event that is currently being
executed.

<element type=”BreakEvent” event=”go_wave2”/>

type BreakEvent
event Name of event to break execution of.

 35

Calculate Element
This element is used to manipulate mission variables.

<element type=”Calculate” start_time=”2.0”>
 <store target=”value_01” source=”1”/>
 <add target=”value_02” source=”1”/>
 <mul target=”value_01” source=”value_02”/>
 <rand target=”value_03” source=”10”/>
</element>

<element type=”Calculate”>
 <store target=”string_01” source=”group_01”/>
 <time target=”value_01”/>
 <clear target=”value_02”/>
</element>

<element type=”Calculate”>
 <clearall/>
</element>

type Calculate

Requires at least one of these optional sub-elements:
store Creates “target” variable and stores “source” value in it.
add Adds “source” value to current “target” value.
sub Removes “source” value from current “target” value.
mul Multiplies “source” value to current “target” value.
rand Stores value between 0 and “source” into “target”.
time Stores time since “start_game” event into “target”.
string Stores “source” string in “target”.
clear Clears “target” variable.
clearall Clears all variables.

Each sub-element requires this attribute:
target Name of variable to manipulate.

Some sub-elements require this attribute (see above):
source Number, string or variable name to use in computation.

 36

CenterLocation Element
This element is used to move a location to a position or unit in the world.

<element type=”CenterLocation” location=”area_01”
 player_type=”campaign_team” only_leader=”true”/>

type CenterLocation
location Name of location to move.

Requires one of these optional attributes:
group_id Name of group to use current coordinates from.
player_type See beginning of this chapter for details.
vehicle_id Name of vehicle to use current coordinates from.
name_id Name of unit to use current coordinates from.
unit String variable with name of a unit to use coordinates from.
position Exact coordinates to use, “x y z”.

Optional attributes:
only_leader Use only coordinates for group leader, “true” or “false”.

ChangeMission Element
This element is used in SP to declare a mission successfully completed and set the
path for the next mission in the campaign.

<element type=”ChangeMission” path=”/levels/mission02/mission02”
 level_number=”1”/>

type ChangeMission
Path Path to next mission in campaign.
level_number Order number of next mission in campaign.

ChangeState Element
This element is used to modify the players control over their character including
display of the HUD.

<element type=”ChangeState” state=”playing”/>

<element type=”ChangeState” state=”inserting”/>

Type ChangeState
State Which state to use, “playing” or “inserting”.

 37

CinematicAddEvent Element
This element is used to create cinematic cameras and add effects to them. Some types
that can be applied to the cameras require markers that are placed in the map editor.

<element type=”CinematicAddEvent” movie="intro_1" event=”goto”
 time=”0.0” duration=”0.0” value=”marker_1”/>

<element type=”CinematicAddEvent” movie=”intro_1” event=”move”
 time=”0.0” duration=”8.5” value=”marker_1” value2=”marker_2”/>

<element type=”CinematicAddEvent” movie=”intro_1”
 event=”lock_vehicle” time=”0” duration=”50.0” value=”helo”/>

<element type=”CinematicAddEvent” movie=”intro_1” event=”stop”
 time=”25” duration=”0.0”/>

type CinematicAddEvent
movie Name of camera/movie to work with.
event Action to perform, see list below.
time At which time to run the event, in seconds after movie starts.
duration How long an effect transition should take.

Event action types:
goto move widescreen

fov lock_vehicle change_movie

stop

Required extra attributes for “goto”:
value1 Name of marker to instantly go to.

Required extra attributes for “move”:
value1 Name of start marker, “current” uses present camera pos.
value2 Name of marker to interpolate to.

Required extra attributes for “widescreen”:
value1 Set if it should fade “in” or “out” the letterbox.

Required extra attributes for “fov”:
value1 New desired Field of View value to interpolate to.

Required extra attributes for “lock_vehicle”:
value1 Name of vehicle to lock camera to look at during duration.

Required extra attributes for “change_movie”:
value1 Name of movie to change to.
value2 Should fade be used, “true” or “false”.

 38

CinematicAddMarker Element
This element is used to create a cinematic camera that follows a path designated by
markers placed in the map editor. The order in which the markers are added to the
movie becomes the order they will be used on the path.

At least four markers are needed for the program to calculate the camera path. The
calculation type is called by using special marker names (see list below). This
cinematic ends automatically when the time given to the last marker on the path has
passed.

CinematicAddEvent will always override CinematicAddMarker if both are used at
the same time.

<element type=”CinematicAddMarker” movie=”intro_1” marker=”marker_1”
 time=”0.0” follow=”true”/>

<element type=”CinematicAddMarker” movie=”intro_1” marker=”_build_”
 time=”0.0” follow=”true”/>

type CinematicAddMarker
movie Name of camera/movie to work with.
marker Name of marker.
time Time for camera to be at marker.
follow Should the camera look along the path, “true” or “false”.

Special marker names:
build Normal built with set times.
_build_normal_ Build with normalized times to give constant speed.
_build_bm_ Build with normalized times and infinity loop.

CinematicPlay Element
This element is used to start a cinematic defined with CinematicAddEvent or
CinematicAddMarker.

<element type=”CinematicPlay” movie=”movie1” fade=”true”/>

type CinematicPlay
movie Name of camera/movie to switch to and start playing.
fade Fade over to movie, “true” or “false”.

 39

ColorSmoke Element
This element is used only in MP to set the color of the Hamburger Hill smoke.

<element type=”ColorSmoke” side=”1” name_id=”hh_smoke”/>

type ColorSmoke
side Side to see blue smoke, “1” or “2”. “0” gives neutral.
name_id Name of smoke unit to manipulate.

Composition Element
This element is used to run compositions.

There are two main types of compositions, those that are placed in the map editor
(found in world.xml) and those that don't have a set location and are run directly
from the composition_manager.xml.

Only compositions that loop need to be deactivated.

<element type=”Composition” id=”emp”/>

<element type=”Composition” vehicle_id=”helo”
 composition=”blackhawk_clouds”/>

<element type=”Composition” vehicle_id=”helo”
 composition=”blackhawk_clouds” action=”deactivate”/>

type Composition

Optional attribute to use when playing composition placed in map editor:
id Name of composition to run.

Optional attributes to play composition on rigged vehicle:
vehicle_id Name of vehicle to use composition on.
composition Name of composition to run from the manager.

Optional attribute, only used to turn composition off:
action Which action to use, “activate” or “deactivate”.

 40

CreateUnit Element
This element is used to create any kind of unit inside the mission, which can also be
given a name_id.

If creating a weapon, optional sub-elements can be added to add modifications like
grenade launcher and combat sight to it (se example for exact syntax). Don’t add
modification not available to that specific weapon of the game will crash!

<element type=”CreateUnit” unit=”m06_rubble_pile”
 pos=”-15137.5 3956.25 -630.20721”/>

<element type=”CreateUnit” unit=”mi28_passover” name_id=”mi28a”
 pos=”15135 145 4000” yaw_pitch_roll=”0 0 -180”/>

<element type=”CreateUnit” weapon=”m32” spare_clips=”6”
 pos=”11215 -4991 -109” yaw_pitch_roll=”0 0 90”/>

<element type=”CreateUnit” weapon=”scar_light”
 pos=”4046 827 28” yaw_pitch_roll=”0 0 95”>
 <mod name=”scar_grenade_launcher” spare_clips=”5”/>
 <mod name=”aimpoint”/>
</element>

type CreateUnit

Requires one of these optional attributes:
pos Exact pos to create unit on, “x y z”.
location Location to create unit inside.

Requires one of these optional attributes:
unit Name of unit to create.
weapon Name of weapon to create.

Optional attribute if using “weapon”:
spare_clips Number of spare clips gained with weapon when picked up.

Optional sub-element if using “weapon”:
mod Defines sub-element for weapon.
name Name of modification to attach to weapon.
spare_clips Number of spare clips for modification if grenade launcher.

Optional attributes:
name_id Assigns created unit a “name_id”.
yaw_pitch_roll Give rotation values to created unit, “x y z”.
slam_dir Slams unit towards first solid object in direction, “x y z”.

 41

DebugString Element
This element is used to show debug strings while working on scripts, but it requires
the use of a console, which isn’t included in the retail version of the game, so use
ShowMessage instead to get the message in the chat window.

<element type=”DebugString” msg=”Begin Game”/>

type DebugString
msg Text to show in console.

DisableUnit Element
This element is used to hide and deactivate units.

<element type=”DisableUnit” name_id=”unit01”/>

type DisableUnit
name_id Name of unit to disable.

DisplayBestPlayer Element
This element is used in MP to display the name of the winning player in PvP modes.

<element type=”DisplayBestPlayer” member_type=”member_a”
 last=”true”/>

type DisplayBestPlayer
member_type See beginning of this chapter for details.
last Display a different message if last player left alive.

EnableUnit Element
This element is used to show and activate units.

<element type=”EnableUnit” name_id=”bunker57” />

type EnableUnit
name_id Name of unit to enable.

 42

EndRound Element
This element is used in MP to end an ongoing round and declare a winner.

<element type=”EndRound” winner_side=”1”/>

<element type=”EndRound” winner_side=”2”
 reason=”Mission Accomplished - all objectives completed”/>

type EndRound
winner_side Declare winning side. “1” for US, “2” for Mex or “0” for tie.

Optional attributes:
reason Give reason message for ending round.

EnvAreaDefault Element
This element is used to set the default environment used during a mission. A default
environment must have been set before using EnvArea.

<element type=”EnvAreaDefault” name=”Mission02Environment”
 active=”true” effect_surface=”main_surface”/>

type EnvAreaDefault
name Name of environment to use as default.
active Designate if it should be active, “true” or “false”.
effect_surface Which surface to use, usually “main_surface”.

ExitPassengers Element
This element is used to make all passengers exit a vehicle.

<element type=”ExitPassengers” vehicle_id=”car_2”/>

type ExitPassengers
vehicle_id Name of vehicle for passengers to leave.

ExplodeVehicle Element
This element is used to destroy vehicles by keep them in the game.

<element type=”ExplodeVehicle” vehicle_id=”tank_2”/>

type ExplodeVehicle
vehicle_id Name of vehicle to destroy.

 43

ForceMusic Element
This element is used to force the mood and intensity of the music.

<element type=”ForceMusic” mood=”suspense” intensity=”1”/>

<element type=”ForceMusic” mood=”combat” intensity=”4”/>

<element type=”ForceMusic” release=”all”/>

type ForceMusic

Either uses these attributes to set mood:
mood Set mode, “suspense” or “combat”.
intensity Set intensity, “1”, “2”, “3” or “4”.

Or use this attribute to release control back to game engine:
release Set what to release, “mood”, “intensity” or “all”.

ForceSpawn Element
This element is used to force players to spawn in MP. Where they spawn has to be
defined with SetSpawnLocation for this element is executed.

<element type=”ForceSpawn” member_type=”member_a” way=”direct”/>

<element type=”ForceSpawn” member_type=”member_b” way=”timed”/>

type ForceSpawn
member_type See beginning of this chapter for details.
way When to spawn them, “direct” or “timed” by set interval.

GameOver Element
This element is used to end a mission in failure.

<element type=”GameOver”/>

type GameOver

 44

GetGameData Element
This element is used in MP to get data about an ongoing game storing it in a variable.

<element type=”GetGameData” id=”side_1_score” name=”_round_kills”
 side=”1”/>

type GetGameData
id Name of variable to store data inside.
name Which game data to store, “_round_kills”,

“_round_score”, “_round_death”, “_round_quit”,
“_team_score”, “_spawn_type”….

side Which side to get data about, “1” for US of “2” for Mex.

GetGlobal Element
This element is used to get the current value of a global variable. Check for full list of
global variables inside sb_global.xml.

<element type=”GetGlobal” setting=”multiplayer_round_time”
 var=”value_01”/>

type GetGlobal
setting Name of global variable to get value from.
var Name of variable to store result in.

GiveLife Element
This element is used to set number of spawns or give additional spawns to an MP
team.

<element type=”GiveLife” side=”1” lives=”1”/>

<element type=”GiveLife” side=”1” lives=”1” add=”true”/>

<element type=”GiveLife” side=”2” lives=”infinite”/>

type GiveLife
side Which side to give life, “1” is US and “2” is Mex.
lives Number of lives to give. “1”, “2”, “5”, “infinite”…

Optional attribute:
add Add to current amount, “true” or “false”.

 45

GivePoints Element
This element is used to give players Victory Points in MP modes that use them.

<element type=”GivePoints” points=”30” side=”2”/>

<element type=”GivePoints” points=”10” player_type=”team_a”
 location=”anywhere”/>

<element type=”GivePoints” points=”1” stored_units=”value_1”/>

type GivePoints
points Amount of points to give.

Requires one of these optional attributes:
side Specify a side to give points to, “1” or “2”.
player_type See beginning of this chapter for details.
stored_units Get units stored inside a variable.

Optional attributes to use with “player_type” or “stored_units”:
location Location players have to be inside to gain points.

MakeAttachable Element
This element is used to allow a player to plant a C4 or EMP on a unit or vehicle.

<element type=”MakeAttachable” attach=”true” vehicle_id=”adat01”
 detonate_event=”blow_c4”/>

<element type=”MakeAttachable” attach=”true” vehicle_id=”panhard01”/>

<element type=”MakeAttachable” attach=”true” name_id=”wreck_01”
 attach_event=”bonus_clear” bomb_type=”do_nothing”/>

type MakeAttachable
attach Make attachable, “true” or “false”.

Requires one of these optional attributes:
vehicle_id Name of vehicle to make attachable.
name_id Name of unit to make attachable.

Optional attributes:
kind Type of bomb to place “c4” or “emp”.
bomb_type Type of use once placed, “press_x” or “do_nothing”
attach_event Name of event to execute once bomb has been attached.
detonate_event Name of event to execute once bomb has been detonated.
store_user Store name of user who detonated bomb in variable.

 46

MissionCommand Element
This element is used to activate mission command areas to restrict the players’
movements, used for performance purposes.

A mission command can deactivated with RemoveMissionCommand.

<element type=”MissionCommand” id=”mc01” player_type=”team_a”
 safe_location=”area_01” kill_location=”area_01k” state=”true”
 delay=”5”/>

<element type=”MissionCommand” id=”mc02” player_type=”team_a”
 safe_location=”area_02” kill_location=”area_02k” state=”true”/>

type MissionCommand
id Name of mission command area.
player_type See beginning of this chapter for details.
safe_location Name of location inside which the player is safe.
kill_location Name of location outside which the player is killed.

Optional attributes:
delay Delay until player gets second warning.

 47

Objective Element
This element is used to create and manipulate objective information and waypoint
markers in the HUD and on the in-game map.

<element type=”Objective” id=”obj01” state=”add”
 headline_id=”mxx_head01” txt_id=”mxx_txt01” waypoint_id=”mxx_wp01”
 waypoint=”-2648 7503 3285” mode=”1”/>

<element type=”Objective” id=”obj02” state=”update”
 headline_id=”mxx_head02_2” txt_id=”mxx_txt02_2”
 waypoint_id=”mxx_wp02” waypoint=”7298 9916 1238” mode=”1”/>

<element type=”Objective” id=”obj01” state=”completed” mode=”1”/>

<element type=”Objective” id=”obj02” state=”remove” mode=”1”/>

<element type=”Objective” id=”wp_01” state=”add” waypoint_id=”mxx_wp”
 waypoint=”-10729.842 8542.731 5369.378” mode=”1”/>

<element type=”Objective” id=”obj_a” state=”add” waypoint_id=”adat_a”
 vehicle_id=”obj_a” mode=”1” map_sprite=”adat_a” splash=”false”/>

<element type=”Objective” id=”mule_1” state=”add” vehicle_id=”mule_1”
 mode=”1” map_sprite=”mule” side=”1”/>

type Objective
id Internal name of objective or marker to manipulate.
state Set state “add”, “update”, “remove”, “aborted” or

“completed”.
mode Define primary or bonus objective, “1” or “2”.

Optional attributes, used when adding or updating objective info:
headline_id Name of string to use as headline, from string.xml.
headline Free text to use as headline, if no string var.
txt_id Name of string to use as description, from string.xml.
txt Free text to use as description, if no string var.

Optional attributes, used when adding or updating waypoint info:
waypoint_id Name of string to use as waypoint tag, from string.xml.

Or free text to use as waypoint tag.
waypoint Coordinates from placement of waypoint, “x y z”.
vehicle_id Name of vehicle to use coordinates from for waypoint.

Optional attributes, used when adding or updating waypoint info:
splash Show message in chat windows, “true” or “false”.
map_sprite Sprite to show on minimap in MP, defined in

world_info.xml (see unified game mode tutorial).
side Show waypoint for only one side in MP, “1” or “2”.

 48

OrderCar Element
This element is used to give orders to cars and trucks.

<element type=”OrderCar” vehicle_id=”truck_01” order=”move”
 position=”-3610 13858 238”/>

<element type=”OrderCar” vehicle_id=”truck_01” order=”move”
 position=”24145 149 210” speed=”0.25”/>

type OrderCar
vehicle_id Name of vehicle to receive order.
order Order to give, “move” or “stop”.

Required attribute when giving “move” order:
position Destination coordinates to use with order, “x y z”.

Optional attribute:
speed Adjust how fast the vehicle should move.

OrderGroup Element
This element is used to give orders to groups to make them move or change their
behavior.

<element type=”OrderGroup” group_id=”group_01” order=”stop”/>

<element type=”OrderGroup” group_id=”group_01” order=”move”
 location=”player_location”/>

<element type=”OrderGroup” player_type=”campaign_team” order=”Stop”/>

<element type=”OrderGroup” player_type=”campaign_team” order=”move”
 location=”extract”/>

<element type=”OrderGroup” group_id=”group_01” order=”Assault”/>

<element type=”OrderGroup” group_id=”group_01” order=”Recon”/>

Type OrderGroup
Order Order to give, “move”, “stop”, “assault” or “recon”.

Requires one of these optional attributes:
group_id Name of group to receive order.
player_type See beginning of this chapter for details.

Requires this attribute when giving “move” order:
location Location for group to move to.

 49

OrderHeli Element
This element is used to give orders to helicopters.

<element type=”OrderHeli” vehicle_id=”heli01” order=”start”
 position=”4723 2106 1000” speed=”1.0” target=”false”/>

<element type=”OrderHeli” vehicle_id=”heli01” order=”start”
 up=”8000” forward=”1000” speed=”0.8”/>

<element type=”OrderHeli” vehicle_id=”heli01” order=”land”
 position=”-28239 532 8682” speed=”0.62” target=”true”/>

<element type=”OrderHeli” vehicle_id=”heli01” order=”move”
 position=”-25365 309 2516” speed=”0.8” target=”true”/>

<element type=”OrderHeli” vehicle_id=”heli01” order=”move”
 speed=”0.5” up=”5500” target=”true”/>

<element type=”OrderHeli” vehicle_id=”heli01” order=”target”
 target_rot=”0 0 29” position=”-28239 532 868”/>

<element type=”OrderHeli” vehicle_id=”heli01” order=”target”
 position=”24476 16921 2953” speed=”1.0”/>

<element type=”OrderHeli” vehicle_id=”heli01” order=”guard”
 position=”5719 14525 8753” inner_radius=”15000”
 outer_radius=”20000”/>

<element type=”OrderHeli” vehicle_id=”heli01” order=”guard”
 position=”-5548 1447 2800” inner_radius=”8000”
 outer_radius=”15000” speed=”0.8” target=”true”/>

type OrderHeli
vehicle_id Name of helicopter to receive order.
order Order to give, “start”, “move”, “target”, “guard” or

“land”.

Requires these attributes when giving “guard” order:
position Set destination coordinates, “x y z” in world system.
inner_radius Radius for how far the helicopter should look for targets.
outer_radius Radius for how far the helicopter should follow targets.

Optional attributes:
up Set distance for helicopter to rise up, in centimetres.
forward Set distance for helicopter to move forward, in centimetres.
speed Set how fast the helicopter should move.
position Set destination coordinates, “x y z” in world system.
target_rot Set rotation destination in degrees, “x y z” (z is ccw).
target Set if helicopter must reach set destination for new order.

 50

OrderTank Element
This element is used to give orders to tanks and mules.

Notice that when giving the order “patrol”, this element has contents in the form of
each destination waypoint.

<element type=”OrderTank” vehicle_id=”mule1” order=”move” ai=”true”
 world_x=”-6942” world_y=”-13449” speed=”0.5”/>

<element type=”OrderTank” vehicle_id=”t1” order=”move” ai=”true”
 location=”tank_gotot”/>

<element type="OrderTank" vehicle_id="t1" order=”stop” ai=”true”/>

<element type=”OrderTank” vehicle_id=”t1” order=”set_fire_ready”
 value=”true” ai=”true”/>

<element type=”OrderTank” vehicle_id=”t1” order=”set_fire_ready”
 value=”false” ai=”false”/>

<element type=”OrderTank” vehicle_id=”t1” order=”patrol” ai=”true”>
 <waypoint position=”12500 4500 0”/>
 <waypoint position=”2500 4500 0”/>
</element>

type OrderTank
vehicle_id Name of tank to receive order.
order Order to give, “move”, “patrol”, “stop” or

“set_fire_ready”.
ai Set state of tank AI, “true” or “false”.

Requires one of these optional attributes when giving “move” order:
world_x Set destinations “x” coordinate.
world_y Set destinations “y” coordinate.
location Set a location as destination.

Requires this attribute when giving “set_fire_ready” order:
value Set state of “set_fire_ready” order, “true” or “false”.

Requires sub-elements of this type when giving “patrol” order:
waypoint position Set waypoint coordinate, “x y z”.

Optional attributes:
speed Set how fast the tank or mule should move.

 51

OrderUse Element
This element is used to order a group to use an object, like for example an alarm.

<element type=”OrderUse” use_name_id=”item_01” group_id=”group_01”
state=”false”/>

<element type=”OrderUse” use_name_id=”item_01” group_id=”group_01”
state=”false” only_leader=”true”/>

type OrderUse
use_name_id Name of object to use.
group_id Name of group to receive order.

Optional attributes:
amount If you want less then all units to carry out order, “1”, “2”…
only_leader If only leader should be given order, “true” or “false”.
state Only use if object has this state, “true” or “false”.

PlayCustomAnimation Element
This element is used to play a custom animation on a soldier in a unit.

<element type=”PlayCustomAnimation” anim=”mission02_ghost04”
 align_point=”point4” soldier=”3” player_type=”campaign_team”
 exit_stance=”crouch”/>

<element type=”PlayCustomAnimation” anim=”mission06_ghost02”
 align_point=”point3” soldier=”0” group_id=”help_up”
 exit_stance=”upright” weapon_in_hands=”true”/>

<element type=”PlayCustomAnimation” anim=”mission10_ghost01”
 align_point=”point2” soldier=”0” player_type=”campaign_team”
 exit_stance=”none” weapon_in_hands=”true”/>

type PlayCustomAnimation
anim Name of animation to play.
soldier Index of soldier in group to play animation on, “0”, “1”…
align_point Play animation towards this point placed in map editor.
exit_stance Stance of unit after animation, “upright”, “crouch”,

“prone” or “none”.

Requires one of these optional attributes:
group_id Name of group containing desired soldier.
player_type See beginning of this chapter for details.

Optional attributes:
weapon_in_hand Perform animation with weapon linked to hand, “true” or

“false”.

 52

PlayDynamicMusic Element
This element is used to start playing the dynamic music on a level.

<element type=”PlayDynamicMusic”/>

Type PlayDynamicMusic

PlayerAction Element
This element is used to create an action interface with the player.

<element type=”PlayerAction” location=”area_01” event=”done_01”
 player_type=”campaign_team” message=”designate_launch_bay”/>

type PlayerAction
location Location where action is available.
message Message to show when in location.
event Name of event to run once action button is pressed.

Optional attributes:
style Style for message, “0” is normal and “1” is highlighted.
clear Removes ability of action is “true”.

PlayMemoMusic Element
This element is used to play memorable moment music.

<element type=”PlayMemoMusic” cue=”act1_part1”/>

<element type=”PlayMemoMusic” cue=”act1_part4”/>

<element type=”PlayMemoMusic” cue=”act3_climax”/>

type PlayMemoMusic
cue Name of music cue to play.

 53

PlaySound Element
This element is used to play a sound cue to a player inside a location.

<element type=”PlaySound” cue=”border_firefight”
 player_type=”campaign_team” location=”anywhere”/>

type PlaySound
cue Name of sound cue to play.
player_type See beginning of this chapter for details.
location Name of location to play sound inside, “anywhere” if none.

PlayWorldSound Element
This element is used to play a sound cue at a position in the world.

<element type=”PlayWorldSound” id=”sound_01” action=”play”
 cue=”cue_01” vehicle_id=”adat_01”/>

type PlayWorldSound
id Internal name of sound cue, given at “play” action.
cue Name of sound cue to play.
action What to do with sound, “play” or “stop”.

Requires one of these optional attributes:
vehicle_id Name of vehicle to use current coordinates from.
pos Exact coordinates to use, “x y z” in world.

RemoveGroup Element
This element is used to remove a group from the mission. When this element is used,
the game considers the removed group as killed.

<element type=”RemoveGroup” group_id=”guards01”/>

type RemoveGroup
group_id Name of group to remove.

RemoveMissionCommand Element
This element is used to remove a mission command group from the mission.

<element type=”RemoveMissionCommand” id=”mc_01”/>

type RemoveMissionCommand
id Name of mission command to remove.

 54

RemoveVehicle Element
This element is used to remove a vehicle from the mission. When this element is used,
the game considers the removed vehicle as destroyed and all groups inside it as killed.

<element type=”RemoveVehicle” vehicle_id=”insert_heli”/>

type RemoveVehicle
vehicle_id Name of vehicle to remove.

ReturnToMenu Element
This element is used to return the player to the menu after the final mission in a
campaign.

<element type=”ReturnToMenu”/>

type ReturnToMenu

SaveGame Element
This element is used to save the current game situation, works in SP mode only.

<element type=”SaveGame” name=”check_point03”/>

<element type=”SaveGame” name=”check_point00” restart=”true”/>

type SaveGame
name Name to give save game entry.

Optional attributes:
restart Loading this save game will restart the mission script.

SaveLoad Element
This element is used to toggle the save and load ability during a mission.

<element type=”SaveLoad” enable=”false”/>

<element type=”SaveLoad” enable=”true”/>

type SaveLoad
enable Allow saves and loads, “true” or “false”.

 55

ServerData Element
This element is used in MP to get or set a gametype setting on the server.

<element type="ServerData" get="capture_time" var="siege_time"/>

<element type="ServerData" set="capture_time" var="new_siege_time"/>

type ServerData
var Name of variable to get value from or put value into.

Requires one of these optional attributes:
get Name of server setting to get from server to variable.
set Name of server setting to set from variable.

SetCanTakeOrders Element
This element is used to toggle player control over a vehicle, artillery or air strike.
Adds and removes them from the command list.

<element type=”SetCanTakeOrders” vehicle_id=”cypher” value=”true”/>

<element type=”SetCanTakeOrders” vehicle_id=”f15” value=”true”/>

<element type=”SetCanTakeOrders” vehicle_id=”mortar” value=”true”/>

<element type=”SetCanTakeOrders” vehicle_id”"mule” value=”true”/>

<element type=”SetCanTakeOrders” vehicle_id=”abrams” value=”true”/>

<element type=”SetCanTakeOrders” vehicle_id=”f15_bunker” value=”true”
 target_name_id=”kashmira” event=”tagged_finished”/>

type SetCanTakeOrders
vehicle_id Name of unit to set control status on.
value Which mode to set, “true” or “false”.

Optional attributes, have to be used together:
target_vehicle_id If an attack order is issued on this vehicle, event will run.
event Name of event to run if target vehicle is targeted.

 56

SetEnvironment Element
This element is used to set an environment to use.

<element type=”SetEnvironment” environment=”formiddag”/>

<element type=”SetEnvironment” environment=”indoor”/>

type SetEnvironment
environment Name of environment to use.

SetEventStatus Element
This element is used to change internal state of an event.

<element type=”SetEventStatus” event=”event_01” done=”true”/>

<element type=”SetEventStatus” event=”event_01” done=”false”/>

type SetEventStatus
event Name of event to manipulate.

Requires at least one of these optional attributes:
done Set “once” attribute on event, “true” or “false”.
once Set “done” attribute on event, “true” or “false”.

SetGlobal Element
This element is used to set the value of a global variable. Check for full list of global
variables inside sb_global.xml.

<element type=”SetGlobal” global=”det_see_zone1” value=”600”/>

<element type=”SetGlobal” global=”det_see_zone2” value=”800”/>

<element type=”SetGlobal” global=”det_see_zone3” value=”1750”/>

<element type=”SetGlobal” global=”det_see_zone4” value=”14000”/>

<element type=”SetGlobal” global=”det_auto_detected” value=”100”/>

<element type=”SetGlobal” global=”dont_fade_chat” value=”true”/>

type SetGlobal
global Name of global variable to set.
value Value or state to set global variable to.

 57

SetKillScoreLocation Element
This element is used in MP to set a location where kills are rewarded with extra
Victory Points, in MP modes that use them.

<element type=”SetKillScoreLocation” location=”obj_a_assist”
 set=”true” side=”2” score=”1”/>

type SetKillScoreLocation
location Name of location inside which to reward extra points.
set Set state of reward location, “true” or “false”.
side Which side that can gain rewards at location, “1” or “2”.
score Amount of points awarded for kill inside location.

SetHeliCloseDoors Element
This element is used to order a helicopter to close its doors.

<element type=”SetHeliCloseDoors” vehicle_id=”heli01”/>

type SetHeliCloseDoors
vehicle_id Name of helicopter to give command.

SetHeliDrop Element
This element is used to make a helicopter allow the player to descend on fast-rope, if
fast-rope was selected for the helicopter in the map editor.

<element type=”SetHeliDrop” vehicle_id=”heli01”/>

type SetHeliDrop
vehicle_id Name of helicopter to give command.

SetHeliDropRope Element
This element is used to make helicopter lower fast-ropes to the ground, if fast-rope
was selected for the helicopter in the map editor.

<element type=”SetHeliDropRope” vehicle_id=”heli01”/>

type SetHeliDropRope
vehicle_id Name of helicopter to give command.

 58

SetHeliStand Element
This element is used to stabilize helicopter for drop and open doors, display to
“press x” message to player when allowed to exit helicopter.

<element type=”SetHeliStand” vehicle_id=”heli01”/>

type SetHeliDropRope
vehicle_id Name of helicopter to give command.

SetObjectiveABC Element
This element is used in MP to control the state of the objective A, B and C interface.

<element type=”SetObjectiveABC” objective=”1” state=”true”/>

type SetObjectiveABC
objective Objective to manipulate, “1” is A, “2” is B and “3” is C.
state Which state to set, “true” for active or “false” for done.

SetPlayerControlled Element
This element is used to enable or disable groups to follow or take orders from the
player team.

It can also set a destination vehicle for the group, which will disable the player control
when the group gets close that that vehicle.

<element type=”SetPlayerControlled” group_id=”group_01”
 value=”true”/>

<element type=”SetPlayerControlled” group_id=”group_01”
 value=”true” group_localize_id=”support_us_marines”/>

type SetPlayerControlled
group_id Name of group to add or remove from player control.
value Which mode to set, “true” or “false”.

Optional attributes:
group_localize_id Name of string to show in order list.

 59

SetRoundTime Element
This element is used in MP to set a new round time for the current round.

<element type=”SetRoundTime” time=”3600”/>

type SetSlot
time New round time in seconds.

SetSideScore Element
This element is used in MP to set current score for each side.

<element type=”SetSideScore” score_a=”team_a_score”
 score_b=”team_b_score” from_var=”true”/>

<element type=”SetSideScore” score_a=”50” score_b=”30”
 from_var=”false”/>

type SetSideScore
score_a Score to give US side.
score_b Score to give Mex side.
from_var Define if score if given inside variables, “true” or “false”.

 60

SetSlot Element
This element is used to change slot for a unit, which affects how it is used in game.

For example slot “24” is used by friendly vehicles, slot “25” is used by hostile
vehicles and slot “17” is used by neutral vehicles.

Setting units to slot “0” is a good way to remove them from the game world, but it’s a
one way process so they can not be returned again during the current mission.

<element type=”SetSlot” name_id=”first_scrambler” slot=”20”/>

type SetSlot
name_id Name of unit to manipulate.
slot Set which slot to place unit in.

List of all slots (play with at own risk):
0 Unit Trashcan 20 Small Static Covers
1 Static 21 Static Elevated Ground
2 Team A 22 Crew Team A
3 Team A Group 23 Crew Team B
4 Team A Dead 24 Vehicle Team A
5 Team B 25 Vehicle Team B
6 Team B Group 26 Effect Spawners
7 Team B Dead 27 Dropped Equipment
8 Group Unit 28 Effect Units
9 Ragdolls 30 HUD
10 Inventory 32 Misc. Usables
11 Pickups 33 Deactivated Usables
12 Weapons 34 Backdrop
13 Props 35 Landscape
14 Debris 36 Milieu
15 Static Covers 37 Neutral Beings
16 Dynamic Covers 38 Brushes
17 Vehicles 39 Compositions
18 Projectiles 40 Indestructables
19 Ai Node

 61

SetSpawnLocation Element
This element is used in MP to activate or deactivate spawn locations.

<element type=”SetSpawnLocation” location=”spawn_zone” side=”1”
 set=”true”/>

type SetSpawnLocation
location Name of location to use for spawn.
side Which side the spawn location is for, “1” or “2”.
set Turn on or off spawn location, “true” or “false”.

SetToSupply Element
This element is used to activate or deactivate a vehicles ability to give supplies to the
player team.

<element type=”SetToSupply” vehicle_id=”stryker01” mode=”true”
 event=”enter_equipment”/>

<element type=”SetToSupply” vehicle_id=”stryker01” mode=”false”/>

type SetToSupply
vehicle_id Name of vehicle to manipulate.
mode Which mode to set, “true” or “false”.

Optional attributes:
event Name of event to run after player requested supplies.

SetTransportType Element
This element is used to set a vehicle to insert of extract a group.

<element type=”SetTransportType” vehicle_id=”helo_01”
 transport_type=”insertion”/>

<element type=”SetTransportType” vehicle_id=”truck_01”
 transport_type=”extraction”/>

type SetTransportType
vehicle_id Name of vehicle to manipulate.
transport_type Which mode to set, “insertion” or “extraction”.

 62

SetWindDirection Element
This element is used to set the wind direction in the mission.

<element type=”SetWindDirection” degrees=”180” variation=”180”
 time=”1”/>

type SetWindDirection
degree Wind direction in degrees.
variation Variation in +/- given degrees.
time Time until direction fully changed, in seconds.

SetWindEnable Element
This element is used to turn on or off the wind in the mission.

<element type=”SetWindEnable” value=”true”/>

type SetWindEnable
value Should there be wind, “true” or “false”.

SetWindSpeed Element
This element is used to set the wind speed in the mission.

<element type=”SetWindSpeed” speed=”3” unit=”m” variation=”4”
 time=”5”/>

<element type=”SetWindSpeed” speed=”3” unit=”beaufort” variation=”2”
 time=”3.5”/>

type SetWindSpeed
speed Wanted wind speed.
unit Entered wind speed unit type, “m” for m/s, “cm” for cm/s and

“beaufort” for beaufort.
variation Speed variation in +/- given units.
time Time unit speed fully changed, in second.

 63

SetWindTilt Element
This element is used to set the wind tilt in the mission.

<element type=”SetWindTilt” degrees=”5” variation=”10” time=”5”/>

type SetWindTilt
degrees Wind tilt in degrees.
variation Tilt variation in +/- given degrees.
time Time unit tilt fully changed, in second.

ShowMessage Element
This element is used to display a message for the player team.

<element type=”ShowMessage” msg_id=”Tut_Text_33”/>

<element type=”ShowMessage” msg=”1425 HRS”/>

<element type=”ShowMessage” msg_id=”hh_ghost_win_rebels_killed”
 member_type=”member_a” header=”rvsa_victory” kind=”splash”/>

<element type=”ShowMessage” msg_id=”hh_ghost_win_rebels_killed”
 member_type=”member_b” header=”rvsa_defeat” kind=”splash”/>

type ShowMessage

Requires one of these optional attributes:
msg_id Name of string to use as message, from string.xml.
msg Free text to use as message, if no string.

Optional attributes:
kind Used to show message as “splash” instead of in chat.
member_type See beginning of this chapter for details.
header String to show as large header text.

SimulatePlayerAction Element
This element is used to simulate that the player presses the action key to force player
to perform actions while in cinematic mode.

<element type=”SimulatePlayerAction”/>

type SimulatePlayerAction

 64

StartPlayerTrigger Element
This element is used to activate a player trigger.

<element type=”StartPlayerTrigger” name=”ptrigger_01”/>

type StartPlayerTrigger
name Name of player trigger to activate.

StartTrigger Element
This element is used to activate a trigger.

<element type=”StartTrigger” name=”trigger_01”/>

<element type=”StartTrigger” name=”trigger_01” preserved=”false”/>

type StartTrigger
name Name of trigger to activate.

Optional attributes:
preserved Override trigger preserved variable with this setting.

StopAllTriggers Element
This element is used to deactivate all active triggers.

<element type=”StopAllTriggers”/>

type StopAllTriggers

StopMusic Element
This element is used to stop the music from playing.

<element type=”StopMusic”/>

type StopMusic

StopPlayerTrigger Element
This element is used to deactivate a player trigger.

<element type=”StopPlayerTrigger” name=”ptrigger_01”/>

type StopPlayerTrigger
name Name of player trigger to deactivate.

 65

StopTrigger Element
This element is used to deactivate a trigger.

<element type=”StopTrigger” name=”trigger_01”/>

type StopTrigger
name Name of trigger to deactivate.

StoreUnits Element
This element is used to store units in a location into a variable.

<element type=”StoreUnits” store_unit=”value_1” player_type=”team_a”
 location=”area_01”/>

type StoreUnits
store_unit Name of variable to store units in.
location Name of location to check for units inside.

Requires one of these optional attributes:
group_id Name of group to check if it should be stored.
player_type See beginning of this chapter for details.
name_id Name of unit to check if it should be stored.

TagUnits Element
This element is used to tag or untag units.

<element type=”TagUnits” action=”tag” duration=”60”
 group_id=”group_01”/>

<element type=”TagUnits” action=”tag” duration=”10”
 player_type=”team_b” location=”tdm_spawn_a”/>

type TagUnits
action What to do with given units, “tag” or “untag”.
duration Define how many seconds the tags should stay.

Requires one of these optional attributes:
group_id Name of group to tag.
player_type See beginning of this chapter for details.
name_id Name of unit to tag.
stored_units Name of variable with stored units to tag.

Optional attributes:
location Name of location to only tag/untag units inside.

 66

TeleportGroup Element
This element is used to teleport a group, or part of a group, to another location.

<element type=”TeleportGroup” group_id=”spare_team”
 location=”anywhere” target_location=”area_01” warp=”true”
 look_at=”4001 8693 150”/>

<element type=”TeleportGroup” group_id=”group_id”
 location=”area_01” target_location=”area_02”/>

<element type=”TeleportGroup” player_type=”campaign_team”
 location=”area_01” target_location=”area_02”/>

type TeleportGroup
target_location Name of location to send unit.

Requires one of these optional attributes:
group_id Name of group to teleport.
player_type See beginning of this chapter for details.
name_id Name of unit to teleport.
vehicle_id Name of vehicle to teleport (not tested).

Optional attributes:
location Name of location to only teleport units found inside.
warp Set to “false” if teleporting a static object.
look_at Set point for unit to face once teleported.

TriggerEvent Element
This element is used to call an event to execute.

<element type=”TriggerEvent” event=”event_01”/>

type TriggerEvent
event Name of event to call.

 67

TriggerEventIfVar Element
This element is used to call an event to execute if a given variable has a desired value.

Note: There are a few default variables that can be used to check which difficulty the player is using
(“game_difficulty”) or if the mission is being played in SP or Coop (“this_is_coop”),
which can come in handy when using this element.

<element type=”TriggerEventIfVar” var=”value_01” less_than=”1”
 event=”event_01”/>

<element type=”TriggerEventIfVar” var=”this_is_coop” equal=”1”
 event=”coop_event” else_event=”single_event”/>

<element type=”TriggerEventIfVar” var=”game_difficulty”
 equal_string=”easy” event=”go_easy”/>

<element type=”TriggerEventIfVar” var=”game_difficulty”
 equal_string=”normal” event=”go_normal”/>

<element type=”TriggerEventIfVar” var=”game_difficulty”
 equal_string=”hard” event=”go_hard”/>

<element type=”TriggerEventIfVar” var=”game_difficulty”
 equal_string=”hardcore” event=”go_hardcore”/>

<element type=”TriggerEventIfVar” var=”side_1_score”
 greater_than=”side_2_score” event=”ghosts_win_by_score”
 else_event=”rebels_win_by_score”/>

type TriggerEventIfVar
var Name of variable to check against.

Requires one of these optional attributes:
event Name of event to call if variable condition check is good.
event_from_var Name of variable containing name of event to call if variable

condition check is good.

Requires one of these optional attributes:
equal Run event if “var” value is equal to given value or contents

of given variable name.
less_than Run event if “var” value is less than given value or contents

of given variable name.
greater_than Run event if “var” value is greater than given value or

contents of given variable name.
equal_string Run event if “var” string is equal to given string

Optional attributes:
else_event Name of event to call if variable condition check fails.
else_event_from_var Name of variable containing name of event to call if

variable condition check fails.

 68

TriggerRandomEvent Element
This element is used to add replay ability to the mission, by calling a random event to
execute from a given list depending on a random value compared to a given chance
list.

You only need to use one event attribute and one chance attribute for this element to
work. The values given to the chance attributes are the upper limit for its connected
event to get called, RPG players will recognize this as a D100 list.

For example if “chance1” is set to “40”, “chance2” is set to “55”, “chance3” is set to
“74” and “chance4” is set to “90”, then:
”event1” will get called if the random number is 0 or up to 40,
”event2” will get called if the random number is greater then 40 and up to 55,
”event3” will get called if the random number is greater then 55 and up to 74,
”event4” will get called if the random number is greater then 74 and up to 90,
and no event at all will get called if the random number is greater then 90.

<element type=”TriggerRandomEvent” event1=”ev_a” chance1=”25”
 event2=”ev_b” chance2=”50” event3=”ev_c” chance3=”75”
 event4=”ev_d” chance4=”100”/>

<element type=”TriggerRandomEvent” event1=”ev_a” chance1=”33”
 event2=”ev_b” chance2=”66” event3=”ev_c” chance3=”100”/>

<element type=”TriggerRandomEvent” event1=”ev_a” chance1=”50”
 event2=”ev_b” chance2=”100”/>

<element type=”TriggerRandomEvent” event1="ev_a” chance1=”50”/>

type TriggerRandomEvent
event1 Name of first event that could get called.
chance1 Number between 1 and 100, percent chance for “event1”.

Optional attributes, but each event* requires you to use its chance* counterpart:
event2 Name of second event that could get show.
event3 Name of third event that could get show.
event4 Name of forth event that could get show.
chance2 Number between chance1 and 100, chance for “event2”.
chance3 Number between chance2 and 100, chance for “event3”.
chance4 Number between chance3 and 100, chance for “event4”.

 69

UnitSequence Element
This element is used to trigger an animation sequence imbedded in a unit.

<element type=”UnitSequence” name_id=”EMP”/>

<element type=”UnitSequence” name_id=”mulecarrier”
 vehicle_id=”mule_drop”/>

type UnitSequence
name_id Name of unit to trigger sequence in.

That was a short description of all the elements used in GRAW2. Some require that
others where used before them, but looking into the original missions should also help
you understand more about when each elements can be used and what purpose it was
initially designed for.

The “SetHeli*” commands are a good example of such elements that have very
specific purpose and has to be used as originally intended of they won’t do anything
at all. Check original missions for the order that should be used in and at what time
space.

Just as another heads up, I’ve noticed that there are some remains of other GRAW1
elements in the mission scripts which are commented out, but those are not available
anymore as they have been replaced by one of more of the above in some way.

Now let’s move on to Player Trigger, which are all new to GRAW2.

 70

Chapter 7: Player Triggers

Player triggers, as described briefly in chapter 2, work a bit different from normal
triggers. This trigger type always evaluates individually for each player, which the
normal trigger doesn’t, and it also can’t be triggered by an AI even if it is on the team
the trigger is specified for. What function this leads to is that player triggers are used
to control things that should only be shown or done for an individual player, like a
message that shows when the player enters an area to help them navigate or the
change of environment effects for a player that goes from outdoors to indoors.

Just like normal triggers the player triggers have to be activated through an event
before they can be evaluated, and they can also be deactivated through events.

Player Trigger example:
<player_trigger name=”test” player_type=”team_a”>
 <condition name=”InLocation” location=”area_01”/>
 <on_enter name=”Message” msg=”Entering...”/>
 <on_exit name=”Message” msg=”Leaving...”/>
</player_trigger>

The main player trigger element uses “name” and “player_type” attributes as
described in chapter 2. Just like for normal triggers “player_type” is a special
attribute, which is described in more detail at the beginning of chapter 5 and 6, so I
won’t cover that here.

Conditions
A player trigger requires a condition, but right now it has only one version available,
which is “InLocation”, so it isn’t much to choose from here.

InLocation Condition
This condition type is used to check if the player, if on the specified team, is inside a
given location.

<condition name=”InLocation” location=”area_01”/>

name InLocation
location Name of location to check for player inside.

 71

Action Triggers
A player trigger requires at least one action trigger with an action attribute. With the
normal triggers you could only specify what should happen after all its conditions
where true, but here you are given some more options. All three action triggers can
use the same action attributes, which will be listed later in this chapter.

<on_enter name=”.../>

<on_exit name=”.../>

<on_inside name=”.../>

Available Action Trigger types:
on_enter Runs its action once conditions evaluates as true.
on_exit Runs its action once conditions stop evaluate as true.
on_inside Runs its action continuously while conditions evaluate as

true.

All Action Triggers requires this attribute:
name Name of action to take for list below.

Action Attributes
Each action trigger requires an action attribute, and each action attribute is followed
by different action specific additional attributes.

GuiMessage Display GUI message.
HideWorld Hide objects inside location.
Message Display message in chat window.
SetState Set value on variable.
ShowWorld Show objects inside location.
StartEnvArea Start a surface dependant environment effect.
StopEnvArea Stop a surface dependant environment effect.
TriggerEvent Name of event to trigger, will affect all players.

Note: The surface dependant environment effects are only used on AGEIA Island in the original game
to add flying leafs around the player, generated from a special invisible surface surrounding the
player.

 72

GuiMessage Action
This action type is used to display a message in the players GUI.

<on_enter name=”GuiMessage” msg_id=”loc_mp_calavera_04”/>

<on_enter name=”GuiMessage” msg_id=”mission10_cinematic_text”
 color=”75 255 80” position=”30 440 0” align=”topleft”/>

name GuiMessage

Requires one of these optional attributes:
msg Text to display as message.
msg_id Name of string containing message to display.

Optional attributes:
color Set wanted color on text in “r g b” values.
position Location on screen, set according to the 800x600 resolution.
align How to align text to given position, “topleft”, “center” or

“bottomright”.
stay Allow text to stay or fade away, “true” is stay.

HideWorld Action
This action type is used to hide all objects inside a location from the game world.

<on_enter name=”HideWorld” target_location=”area_01”/>

name HideWorld
target_location Name of location to hide objects inside.

Message Action
This action type is used to display a message in the chat window.

<on_exit name=”Message” msg=”Leaving...”/>

name Message
msg Text to display in chat.

 73

SetState Action
This action type is used to set the value to, or create a new variable.

<on_exit name=”SetState” id=”var01” value=”1”/>

name SetState
id Name of variable to set or create.
value Value to set in variable.

ShowWorld Action
This action type is used to show all objects inside a location to the game world.

<on_enter name=”ShowWorld” target_location=”area_01”/>

name ShowWorld
target_location Name of location to show objects inside.

StartEnvArea Action
This action type is used to start a surface dependent environment effect.

<on_enter name=”StartEnvArea” effect=”leaf_test_debris_real”
 effect_surface=”main_surface”/>

name StartEnvArea
effect Name of effect to run
effect_surface Name of surface to activate the effect on.

StopEnvArea Action
This action type is used to stop a surface dependent environment effect.

<on_exit name=”StopEnvArea” effect_surface=”main_surface”/>

name ShopEnvArea
effect_surface Name of surface to deactivate the effect on.

TriggerEvent Action
This action type is used to trigger a normal event, which will be called each time a
player on the designated team enters the condition area.

<on_exit name=”TriggerEvent” event=”event_01”/>

name TriggerEvent
event Name of event to trigger.

 74

Chapter 8: Briefings

The mission briefing page in GRAW2 has got its own base element which defines
things like which briefing texts to show, which map to show, where the markers
should be on the map, which location texts should be on the map and how many
ghosts that can play the mission in SP.

The base element is called “briefing” and requires two attributes. These are
“text_id”, which needs a string name but isn’t used in the interface anymore, and
“map_texture”, which should be given the path to the map to be shown inside the
briefing window. A third attribute is also available but is optional to use and it’s
called “max_ghosts”. It defines how many ghosts, including Mitchell, that are
allowed to play the mission in single player. In campaign coop you are always
allowed to play with a full team consisting of four members.

Example briefing from mission01:
<briefing text_id=”mission_01_briefing”
 map_texture=”/data/textures/atlas_gui/mission_gfx/briefing_m01”>

 <briefing_text txt_id=”briefing_m01_strategic”
 headline_id=”briefing_strategic_hl” anchor=”obj1”
 pos=”0.074 0.246 -2” type=”objective”/>
 <briefing_text txt_id=”briefing_m01_tactical”
 headline_id=”briefing_tactical_hl” anchor=”obj2”
 pos=”0.12 0.187 -2” type=”objective”/>
 <briefing_text txt_id=”objectives_m01”
 headline_id=”objectives_hl” anchor=”obj3”
 pos=”0.206 0.012 -2” type=”objective”/>
 <briefing_text txt_id=”insertions_m01”
 headline_id=”insertions_hl” anchor=”obj4”
 pos=”0.174 0.246 -2” type=”objective”/>
 <briefing_text txt_id=”tips_m01” headline_id=”tips_hl”
 anchor=”obj5” pos=”0.074 0.246 -2” type=”objective”/>

 <map_text txt_id=”loc_sp_mission01_01” pos=”0.67 0.02 0.4”
 type=”small”/>
 <map_text txt_id=”loc_sp_mission01_02” pos=”0.65 0.155 0.3”
 type=”small”/>
 <map_text txt_id=”loc_sp_mission01_03” pos=”0.673 0.255 0.4”
 type=”small”/>
 <map_text txt_id=”loc_sp_mission01_04” pos=”0.345 0.2 0.1”
 type=”small”/>
 <map_text txt_id=”loc_sp_mission01_05” pos=”0.55 0.5 0.21”
 type=”small”/>
 <map_text txt_id=”loc_sp_mission01_06” pos=”0.5 0.82 0”
 type=”small”/>

 <map_text txt_id=”1” pos=”0.345 0.25 0.1” type=”small”/>
 <map_text txt_id=”4” pos=”0.673 0.315 0.1” type=”small”/>
 <map_text txt_id=”5” pos=”0.86 0.09 0.1” type=”small”/>

 <actor name=”m01_briefing”/>

 <video name=”data/movies/m01_video.bik”/>

</briefing>

 75

Briefing Element Types
The briefing element has four different content elements, “briefing_text”,
“map_text”, “actor” and “video”.

Briefing Text Element
This element type is used to designate text to be displayed on the right side of the
briefing. It has predefined anchors which are connected to the five text buttons on the
right above the text field on the briefing screen. The anchors are strategic info
(“obj1”), tactical info (“obj2”), objective info (“obj3”), insertion info (“obj4”) and
general tips (“obj5”).

<briefing_text txt_id=”briefing_m01_strategic”
 headline_id=”briefing_strategic_hl” anchor=”obj1”
 pos=”0.074 0.246 -2” type=”objective”/>

<briefing_text txt_id=”tips_m01”
 headline_id=”tips_hl” anchor=”obj5”
 pos=”0.074 0.246 -2” type=”objective”/>

Required attributes:
txt_id Name of string to show.
headline_id Name of string to show as headline to text.
anchor Anchor to connect text to, “obj1” to “obj5”.
pos “x y z” (not used anymore).
type “objective” (only has one setting).

Map Text Element
This element type is used to designate text to be displayed on the briefing map. The
map uses a 0 to 1 working space, so coordinates are given in values between 0 and 1.
The origin is located in the upper left corner; positive x values goes right, positive y
values goes down and z values are not needed. So “0,5 0,5 0” will be the center of
the map and “0,25 0,25 0” will be the center of the upper left quadrant and so on.

<map_text txt_id=”loc_sp_mission01_01” pos=”0.86 0.02 0.4”
 type=”small”/>

<map_text txt_id=”loc_sp_mission01_06” pos=”0.58 0.82 0”
 type=”small”/>

<map_text txt_id=”1” pos=”0.345 0.25 0.1” type=”small”/>

Required attributes:
txt_id Name of string to show, numbers “1” to “9” also available.
pos Position on map for string, “x y z” in 0 to 1 space.
type “small” (only has one setting).

 76

Actor Element
This element type is used to show a NarCom during the briefing.

<actor name=”m01_briefing”/>

Required attribute:
name Name of NarCom actor to show during briefing.

Video Element
This element type is used to designate a video to show during briefing.

<video name="data/movies/m01_video.bik"/>

Required attribute:
name Name of video to show in briefing.

That is all that you can set inside the mission.xml. You may notice that the insertion
options are not set inside the briefing tags, as listed earlier in chapter 2; they should be
included as elements in the special event called “start_game” which executes when
the briefing starts.

The rest of the restrictions and settings for each mission are set inside the
world_info.xml. There you can define which ghosts should be default on the team,
which weapons that are blocked from selection during the missions, which act and
which mission in the act during the campaign the mission is. Take a look in the
world_info.xml for mission 01 for an example on that. Here comes an outtake.

Part of the world_info.xml for mission01:
<world_info path=”/data/levels/common/campaign_settings.xml”
 name=”mission01” mission_time=”day”>

 <world path=”xml/world.xml”/>
 <mission_script path=”mission.xml”/>
 <info_strings name_id=”campaign_mission_1”/>

 <campaign name=”graw2” act=”1” order=”1” coop=”true”>
 <candidate name=”MITCHELL” kit=”” def_team=”true”/>
 <candidate name=”HUME” kit=”” def_team=”false”/>

 <block_weapon name=”barrett”/>
 <block_weapon name=”predator” coop=”true”/>

 </campaign>
</world_info>

With the end of this chapter we have now looked at all the different elements and
parts found inside the mission.xml. Now I’ll provide a few basic chapters on small
things that I know will come in handy in many scripts. First let’s take a look at
demolition in GRAW2, which was a bit of a hassle to setup in GRAW1.

 77

Chapter 9: Demolition

Demolition is something that is handled a bit differently then in GRAW1. Back then
you had to place a special prop which, once activated in the script, the player could
interact with that then required a special event to be able to detonate and deactivate
the prop so the player couldn’t use it again… Not a very simple solution and not very
versatile as the player had to find the prop to be able to plant a bomb.

In GRAW2 you can now designate any object to be “attachable” and with which
type of explosive you want for the purpose of the mission flow. It can be an explosive
that the player can detonate, in which case it is done with a physics effect when the
player presses the detonation key, or it can be one that is just left on the objective.
You can set events to trigger once the explosive has been placed or when it is
detonated. This system also allows the player to attach the explosive charge anywhere
on the objective, not just on a designated place, which is really cool feature. You can
make any vehicles that are not objectives in the mission attachable just so the option
of placing C4 on them is there incase they can’t take the vehicle out any other way,
simply as there is no restriction to how many attachable objects there are in a mission,
when in GRAW1 you where limited to 8 for each mission as that was the number of
props available.

Make Unit Attachable
This step is really simple. Just create an object in the map editor, let’s say we create
an ADAT and name it “adat01”. Save the world.xml and go into the mission.xml
to add the scripting. The first thing we will have to do in an event before the player
can reach the ADAT is make it attachable.

We do this by using the “MakeAttachable” element type, described in detail in
chapter 6, in a suiting mission event. We want to be able to place a C4 and we want
the player to be able to detonate it during the mission. When it detonates we want an
event to be triggered, called “destroyed_adats”.

Then that element will look like this:
<element type=”MakeAttachable” attach=”true”
 detonate_event=”destroyed_adat01” vehicle_id="adat01"/>

That’s how easy it is to create a demolition object, and it will deactivate itself
automatically when the C4 is detonated as “adat01” will no longer be there for the
player to plant on after it explodes.

If you want to turn of the possibility to plant on the ADAT before the player gets
there, all you have to do is run another event with the same “vehicle_id” and the
“attach” variable set to “false”.

I guess you can see how easily you can combine this with the objective scripting
shown in chapter 4, to create demolition objectives. ;)

 78

Chapter 10: Timers

People have been complaining that there where no timers in GRAW1, but there really
where and they’re just the same in GRAW2. So in this chapter we’ll take a look at
how to setup a simple timer, and also a stoppable timer in case you want to interrupt a
countdown.

Simple Timer
All you need is one trigger and two events. The basic idée behind the timer is that we
call the first event, which acts as a delay before it calls the second event, which is the
one we actually want to execute.

First we create whatever trigger we want to start it. What conditions it has is not
important for the timer function. Just set the trigger to run an event called
“star_timer_30sec”.

Then we create the event that is called by the trigger if all its conditions are true. This
event will start the timer. As contents to this event we’ll add an element of the type
"TriggerEvent" that is given the name of the event we want to run when the timer
runs out by setting it in the attribute “event”. We’ll also need to use the
“start_time” attribute, as this is our actual timer. Set the attribute to “30.0”
seconds, which will delay the triggering of the second event with 30 seconds from the
time the first event, got triggered.

This part of the script looks like this:
<event name=”start_timer_30sec”>
 <element type=”TriggerEvent” event=”done_timer_30sec”
 start_time=”30.0”/>
</event>

Finally we create the event that is called by the timer, which can hold any content you
want to have. Then the timer is completed.

This part of the script looks like this:
<event name=”done_timer_30sec”>
 <element type=”....”/>
 <element type=”....”/>
</event>

 79

Stoppable Timer
To create a stoppable timer we would first complete the simple timer described above,
then add one extra event and any amount of triggers needed to set the conditions for
that event.

So let’s say we have the events from earlier done. We have a trigger for the timer to
start and create a trigger with the conditions to stop the timer, which should be set to
trigger an event we’ll name “stop_timer_30sec”.

The events from earlier should look like this:
<event name=”start_timer_30sec”>
 <element type=”TriggerEvent” event=”done_timer_30sec”
 start_time=”30.0”/>
</event>

<event name=”done_timer_30sec”>
 <element type=”....”/>
 <element type=”....”/>
</event>

To add the ability to stop the timer we’ll simply use the element type “BreakEvent”
as content of our new event, and set its “event” attribute to the name of our timer
event to stop, “start_timer_30sec”. When this new event is called, it will
immediately stop the event doing the countdown, and so preventing it from calling the
event it was supposed to when the timer had run out. If the timer event has already
called the next event, this new event won’t affect anything as it was triggered to late.

That script looks like this:
<event name=”stop_timer_30sec”>
 <element type=”BreakEvent” event=”start_timer_30sec”/>
</event>

Outro
That was the last part of this document. I hope you’ve learned the basics about
scripting for GRAW2 and I’m looking forward to testing out any mission you create.

Good Luck.

Grin_Wolfsong, out.

 80

	 Chapter 1: Introduction and XML Basics
	Intro

	 Chapter 2: Base XML Elements in GRAW2
	Triggers
	 Player Triggers
	Briefings
	 Events

	 Chapter 3: Human Activated Locations
	World.xml
	 Location Trigger
	Enemy Activation Event
	Trigger Activation Event
	Alternative Location Conditions

	 Chapter 4: Objective UI
	 Add Objective Event
	 Separate Waypoint Control
	Strings.xml

	 Chapter 5: Trigger Conditions
	Player Type Attribute
	Conditions
	 Always Condition
	EvaluateVar Condition
	InUse Condition
	Never Condition
	 PlayersNotPermanentlyDead Condition
	PlayersNotSpawnedYet Condition
	 ServerSetting Condition
	ServerSideVar Condition
	SoldiersKilled Condition
	 UnitDestroyed Condition
	UnitHasWeapon Condition
	 UnitInCombat Condition
	 UnitInLocation Condition
	 UnitInTransport Condition
	VehicleDestroyed Condition

	 AND Conditions
	OR Conditions
	 NOT Conditions

	 Chapter 6: Event Element Types
	Start Time Attribute
	Player Type Attribute
	Member Type Attribute
	 Element Types
	ActivateCypher Element
	ActivateGroup Element
	 ActivateRandomGroup Element
	ActivateVehicle Element
	Actor Element
	AddInsertion Element
	 AddRoundTime Element
	AllowSpawn Element
	 AlterGroupStats Element
	 AlterGroupControl Element
	BreakAllEvent Element
	BreakEvent Element
	 Calculate Element
	 CenterLocation Element
	ChangeMission Element
	ChangeState Element
	 CinematicAddEvent Element
	CinematicAddMarker Element
	CinematicPlay Element
	 ColorSmoke Element
	Composition Element
	 CreateUnit Element
	 DebugString Element
	DisableUnit Element
	DisplayBestPlayer Element
	EnableUnit Element
	 EndRound Element
	EnvAreaDefault Element
	ExitPassengers Element
	ExplodeVehicle Element
	 ForceMusic Element
	ForceSpawn Element
	GameOver Element
	 GetGameData Element
	GetGlobal Element
	GiveLife Element
	 GivePoints Element
	MakeAttachable Element
	MissionCommand Element
	 Objective Element
	 OrderCar Element
	OrderGroup Element
	 OrderHeli Element
	 OrderTank Element
	 OrderUse Element
	PlayCustomAnimation Element
	PlayDynamicMusic Element
	PlayerAction Element
	PlayMemoMusic Element
	 PlaySound Element
	PlayWorldSound Element
	RemoveGroup Element
	RemoveMissionCommand Element
	 RemoveVehicle Element
	ReturnToMenu Element
	SaveGame Element
	SaveLoad Element
	 ServerData Element
	SetCanTakeOrders Element
	 SetEnvironment Element
	SetEventStatus Element
	SetGlobal Element
	 SetKillScoreLocation Element
	SetHeliCloseDoors Element
	SetHeliDrop Element
	SetHeliDropRope Element
	 SetHeliStand Element
	SetObjectiveABC Element
	SetPlayerControlled Element
	 SetRoundTime Element
	SetSideScore Element
	 SetSlot Element
	 SetSpawnLocation Element
	SetToSupply Element
	SetTransportType Element
	 SetWindDirection Element
	SetWindEnable Element
	SetWindSpeed Element
	 SetWindTilt Element
	ShowMessage Element
	SimulatePlayerAction Element
	 StartPlayerTrigger Element
	StartTrigger Element
	StopAllTriggers Element
	StopMusic Element
	StopPlayerTrigger Element
	StopTrigger Element
	StoreUnits Element
	TagUnits Element
	 TeleportGroup Element
	TriggerEvent Element
	 TriggerEventIfVar Element
	TriggerRandomEvent Element
	 UnitSequence Element

	 Chapter 7: Player Triggers
	Conditions
	InLocation Condition

	 Action Triggers
	Action Attributes
	HideWorld Action
	Message Action
	 SetState Action
	ShowWorld Action
	StartEnvArea Action
	StopEnvArea Action
	TriggerEvent Action

	Chapter 8: Briefings
	Briefing Element Types
	Briefing Text Element
	Map Text Element
	 Actor Element
	Video Element

	Chapter 9: Demolition
	Make Unit Attachable

	 Chapter 10: Timers
	Simple Timer
	 Stoppable Timer
	Outro

